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ABSTRACT
Connected and Automated Vehicle is the next goal for car manu-
facturers towards traffic safety and efficiency. While researchers
deceived range sensors and vehicular communication, few analyzed
the inside and the outside of the vehicle surface. As a result, current
attacker models are too network-oriented or sensor-oriented. There-
fore, we propose an attacker model which details attacks occurring
in Ground Truth environment and data fusion processes. Then, we
define a new security model with the perspective of achieving a
secured automotive perception.

CCS CONCEPTS
• Security and privacy→ Security requirements; Embedded
systems security; • Computer systems organization → Em-
bedded and cyber-physical systems; Dependable and fault-tolerant
systems and networks;

KEYWORDS
V2X, Sensors, Attacker Model, Security Goals Model, Automotive
Perception

1 INTRODUCTION
Original Equipment Manufacturers (OEMs) plan to commercialize
Connected and Automated Vehicles (CAVs) by 2020. To achieve safe
automation, OEMs enhance automotive range sensors perception
with Vehicle-to-X (V2X) communication. Indeed, the OEMs race
towards full automation is nowadays about conceiving reliable per-
ception systems to ensure passenger safety. Therefore, using data
fusion mechanisms to cope with V2X and sensors weaknesses is
mandatory [1]. However, such a system assumes that the surround-
ing environment perceived by sensors is trustworthy [2] or that
communicating nodes are benevolent [3]. Thus, it is still unclear
what are the possible attacks outside and inside the vehicle that
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can fool the perception system. To achieve reliable automation, at-
tackers action(s) and target(s) need to be defined using an attacker
model. Although several attacker models exist, they are either too
V2X-centric [4–6] or vehicle-centric [7], and thus, do not consider
the whole perception lifecycle. As a result, they fail to capture the
entire attack space. For instance, an attacker can target road signs
to deceive camera perception without interacting with the CAV [8].
Hence, the definition of a new attacker model is necessary. The
remainder of this paper is organized as follows. First, Section 2
presents the perception lifecycle and allows the identification of
assets. Then, Section 3 presents our attacker model derived from the
identified assets. Accordingly, Section 4 proposes the corresponding
security goals model. We discuss the feasibility of some attacks in
Section 5. Finally, Section 6 concludes the paper.

2 PERCEPTION LIFECYCLE
This section identifies the assets within the perception lifecycle.
Figure 1 outlines the perception lifecycle which has two main com-
ponents.

The first one is Objects which regroups:
• the perceiver of the perception system named ego-vehicle,
• the perceived entities named Road Object.

The second component is Data Stages which are the stages followed
by the data through the perception lifecycle defined as follows:

• Data Acquisition is the transition of the physical signal (e.g.,
light intensity, radio wave, pulsed laser light, sound waves)
between a detected road object and the ego-vehicle and its
acquisition processes. It includes communication signals
for V2X and measurement signals for ranging sensors. The
acquisition processes include message encoding/decoding,
security mechanisms (e.g., cryptographic verification) [9],
object detection (e.g., Doppler Shift [10]), and object classifi-
cation (e.g., dots and pixels clustering).

• Data Processing regroups the data fusionmechanisms applied
to the acquired data such as association and/or tracking [11].
Their localization and their implementation within the Per-
ception Lifecycle model vary among OEMs [2, 12, 13].

• Data Storage contains the data stored temporarily (e.g., tracks)
or permanently (e.g., algorithms). Indeed, these data are a
keystone in ensuring the monitoring (e.g., tracks) or the op-
eration of the perception system (e.g., association algorithm).

• Phenotype Data is the observable traits of a Road Object, such
as its morphology (e.g., dimensions), physiological properties
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(e.g., color), behavior (object state over time), and behavior
actions (e.g., human-made tags).

Figure 1 works independently of any communication protocols,
sensors, or data fusion algorithms. Such abstraction exhibits the
primary assets of a perception system to derive our attacker model.
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Figure 1: Perception Lifecycle Model

3 ATTACKER MODEL
This section defines the attacker model for the perception system
of a CAV. First, we define a generic attacker model. Next, using the
assets identified in Section 2, we describe specific attacker mod-
els for the perception system. To do so, we assume that crypto-
graphic mechanisms yield against cryptanalytic attacks (e.g., mes-
sage forgery or side channel attacks).

3.1 Generic Attacker Model Definition
Firstly introduced in VANETs [4] then extended for automotive
sensors [1], a general attacker model defines attacker actions and
potential targets. However, previous works assume that the attacker
always reaches its goal directly which is false. Indeed, a malicious
node can badmouth to neighboring nodes to provoke its victim
exclusion from the network [14]. Also, the alteration of road sign
impacts the vehicle perception indirectly [8, 15]. Thus, we propose
a new generic attacker model with a five-dimensional set as follows:

• Membership stands for an Insider or an Outsider attacker.
An insider attacker is an authenticated member of one or
multiple CAV networks (e.g., CAN, LIN, VANET). Therefore,
she can mount a diverse set of attacks using her given cre-
dentials. Whereas, an outsider is an unauthenticated member
who can mount a limited set of attacks due to her restricted
network access.

• Motivation stands for Malicious or Rational. A malicious
attacker seeks no personal benefits from the attacks and
aims to harm an asset. Whereas, a rational attacker seeks
profit and thus is predictable regarding her attack means
and target(s). Such attribute may help to define the financial
severities of an attack in security risk analysis process [16].
For instance, a rational attacker will aim the perception al-
gorithms contained in a CAV to sell them to hackers on the
black market.

• Scope stands for Local or Extended. A local attacker controls
few entities (e.g., car or traffic light [17]) within a limited
scope (e.g., road intersection). However, an extended attacker
controls several entities scattered across an extended scope
(e.g., university campus [18]).

• Method stands for Active or Passive. While an active at-
tacker must act to attack, a passive attacker simply listens
or observes its target (e.g., network eavesdropping). For in-
stance, in the context of standardized efforts towards the
cooperation between safety and security risk analysis [16],
a meteorological hazard could be a passive attacker.

• Goal stands forDirect or Indirect. A direct attacker reaches its
primary target directly, whereas an indirect attacker reaches
its primary target through secondary targets.

Table 1: Examples of similar attacks with different goal

Attacks
Attacker Model Membership Motivation Scope Method Goal

Alter road signs to fool sensors Outsider Malicious Local Active Indirect
Alter road signs for "fun" Direct

Camera blinding towards unperceived stop sign Outsider Malicious Local Active Indirect
Camera Blinding for "fun" Direct

Communication Badmouthing Insider Malicious Both Active Indirect
Faulty Safety Message Local Direct

As depicted in Table 1, the attack goal helps to define attackers in
the perception domain. However, Goal does not situate wherein the
perception domain the attacker may perform an attack. Therefore,
we need to specify Goal explicitly. To do so, we derive each sub-
attacker model from the Data Stages identified in Section 2 (Table 2).
We define these sub-attacker models and their attacker profiles in
the following sections.

Table 2: Sub-Attacker Models in the Perception Lifecycle

Data Stage Sensor Disrupter Evil Mechanic Malicious Communicator Fusion Persuader
Phenotype ✓ ✓
Acquisition ✓ ✓
Storage ✓ ✓

Processing ✓ ✓ ✓

3.2 Sensor Disrupter
Sensor Disrupter is an attacker that aims at vehicle sensors. Indeed,
CAV perception relies on the acquisitions of exteroceptive sensors
(e.g., camera, lidar, or radar) to perceive the surrounding environ-
ment. Thus, sensors are assets which a Sensor Disrupter can disturb
through various attack means.
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3.2.1 Sensor Illusionist. Sensor Illusionists target sensors di-
rectly during the acquisition stage. During this stage, ranging sen-
sors (e.g., lidar) provide a closely real-time, trusted, and more or less
accurate depiction of the surrounding by measuring the reflected
physical signal [3]. However, at signal impact, an Illusionist can
capture, delay, and replay it forcing the sensor to produce erroneous
measurements. For instance, from the position of sensors target (the
detected object), Petit et al. [19] captured, delayed, and replayed
the lidar signal. Also, they relayed the signal and replayed it from a
different position leading the way towards signal forgery attacks.
Thus, Illusionist attack means include signal delay, relay, replay,
and forgery.

3.2.2 Sensor Blinder. Similarly, Sensor Blinders target extero-
ceptive sensors directly during the acquisition stage. During this
stage, Blinders can alter the physical signal trajectory transiting
between ego-CAV sensors and its surrogating environment. For
instance, a camera cannot detect a facing traffic light state due to
the parked vehicle blocking the view. Or, Blinders can maximize
or minimize signal intensity to emit signals outside the sensing
domain of the sensor [19, 20]. For instance, using fog light against
an automotive camera is a realistic and accessible attack to perform.

3.2.3 Evil Sensor Calibrator. Evil Sensor Calibrators target
exteroceptive sensors directly during the storage stage.Evil Calibra-
tors aims to modify sensor settings to provoke incorrect/missing
measurements. Indeed, range sensors measure the distance between
the Road Object and itself. Then, the measurement system of the
sensor computes the absolute position by moving from the local
referential base of the sensor to a global referential base. However,
Evil Calibrators can modify the local referential base by changing
the physical position, orientation, or internal settings of the sensor.
Such actions lead to an incorrect perception of the Road Object. For
instance, taking the case of Lenticular Printing attack which is an
optical process used to create road signs that look different when
viewed from different angles [15]. Sitawarin et al. demonstrated
that if the localization of the camera used for road signs recogni-
tion is at a different height from the human controller, then the
camera classifier performances are diminished while appearing to
be correctly positioned to the human operator. Thus, an Evil Sensor
Calibrator can drastically modify the sensor orientation to provoke
an absence of measurements. Rarely mentioned, Evil Sensor Cali-
brator attacks remain easy to perform physically and may extend
to other in-vehicle hardware (e.g., Evil Mechanic attacks).

3.2.4 Ground Truth Falsifier. Ground Truth Falsifiers target
exteroceptive sensors indirectly through Road objects at phenotype
stage. Falsifiers physically alter Road objects (e.g., road signs) to
provoke incorrect sensors measurement. For instance, Falsifiers
can forge counterfeit road marks [21]. Therefore, an automotive
camera can detect fake road marks as real ones which may influ-
ence vehicle trajectory. Also, the alteration of road signs known
as Deceiving Autonomous caRs with Toxic Signs (DARTS) leads to
camera misclassification from the camera which may affect vehicle
dynamic [8, 15]. Thus, mentioned attacks are indirect Illusionists
attacks.

Finally, the massive alteration of a Road Object can provoke
an acquisition absence. Indeed, Falsifiers can destroy, remove, or

severely deface road infrastructures. Therefore, mentioned attacks
are indirect Blinder attacks.

3.3 Evil Mechanic
As depicted in Figure 1, the perception lifecycle takes place mostly
within the ego-CAV. Each ECU performs an automotive function
(e.g., powertrain, infotainment, body, chassis, safety) by collecting
and processing data from various sources such as sensors and ECUs.
Therefore, attacking processing data is valuable for an attacker
willing to force the CAV into a wrong assessment or to extract
valuable data (e.g., data fusion algorithms). Related attack sets are
In-vehicle Manipulator and In-vehicle Miner.

3.3.1 In-vehicleManipulator. aims to add,modify, or remove
automotive components or data contained in it. Indeed, an attacker
with elevated physical access (e.g., mechanic) could easily replace
a smart camera by one with a dysfunctional detection algorithm.
Although the camera is recording, its detection capabilities are ab-
normal which may catch off-guard the driver. Besides safety, the
removal or injection (e.g., odometer manipulation [7]) of vehicle
history permits data repudiation. Therefore, a vehicle owner can
repudiate facts in case of fraud insurance, resale, or crime investi-
gation because the falsified vehicle history confirms her statement.
Moreover, the intentional manipulation of tamper-resistant auto-
motive equipment [7, 22] may activate defense mechanisms that
erase all the data contained in such hardware which, thus, benefits
to the attacker. Finally, a mechanic can flash equipment with a
modified firmware to increase her attack range [23]. Therefore, a
malware installation in this equipment allows the injection of CAN
message with incorrect content without requiring the mechanic to
remain plugged into the vehicle.

3.3.2 In-vehicle Miner. eavesdrops in-vehicle data for per-
sonal deeds. For instance, a Miner can sell the vehicle history to
third parties (rational attacker). Indeed, robbers can use the sole
localization history to identify the driver routine and rob her house.
Moreover, eavesdropping Storage and Processing steps help to an-
alyze the behavior of perception algorithms. Once reviewed, this
information is valuable to Sensor Disrupter, Malicious Communica-
tor, or Fusion Persuader.

3.4 Malicious Communicator
As introduced, V2X communications aim to improve vehicular au-
tomation reliability, safety, and traffic efficiency. Like in all social
group, some participants behave against the interest of the com-
munity. Such behaviors threaten communication. We define such
attacker as Malicious Communicator which regroups Fully Adver-
sarial Networking, Voyeur and Communication Deceiver.

3.4.1 Fully Adversarial Networking. is an attacker who in-
serts arbitrary messages and performs selective Denial Of Service
attack [7].

3.4.2 Voyeur. is an attacker that surveys anonymous public
data exchanged in cooperative ITS to obtain confidential data (e.g.,
car owner identity). For instance, in VANET, localization and tra-
jectory of the vehicle are willingly broadcast. Indeed, cooperative
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awareness through communication requires a frequent update of
surrounding vehicles localization. Therefore, it is mandatory to be
able to track vehicles locally. However, Voyeurs can use tracking
to track broadcasting vehicles in a neighborhood or a campus [18].
By tracking vehicle localization contained in the messages, the at-
tacker extracts private data such as preferred driving path, house
localization, children localization, or health status (e.g., hospital,
gym, fast-food). After being processed, the anonymous data allow
extracting confidential information such as vehicle owner identity
using its house localization [24].

3.4.3 CommunicationDeceiver. refers to authenticmessages
with erroneous content. For instance, a malicious traffic light can
send incorrect Signal Phase and Timing (SPaT) messages with a
color state which differs from the phenotypic state. At best, it creates
two different outputs which confuse the automated driving system.
At worst, if the real state color is unavailable (e.g., NLoS), the system
relies on a single incorrect output from the SPaT. Another example
of erroneous message content is the definition of a node dimension
for the standardized Cooperative Awareness Message [25]. Indeed,
the absence of correlation between the class of a V2X node (e.g.,
pedestrian) and the node dimensions could allow Communication
Deceivers to emit a message defining an object with an implausi-
ble size. Therefore, a pedestrian node may have a length that is
between 10 centimeters and 102 meters. Despite some standards
recommendations, the choice of plausibility mechanisms regarding
V2X Data are left open. Thus, if these erroneous content remain
unchecked that may lead to some mis-associations between a V2X
message and a sensor measurements.

3.4.4 OTA Poisoner. refers to an entity that sends any mali-
cious updates Over-The-Air (OTA). Indeed, CAVs will update OTA
their software, firmware, Data Storage to fix vulnerabilities, inac-
curate information, bugs [26]. A malicious update can alter the
integrity of the Data Storage by modifying the processing algo-
rithms (e.g., cryptographic algorithms) or the perception data (e.g.,
cartography data).

3.5 Fusion Persuader
Persuaders disrupt the processing and storage stages to disable or to
deceive the perception system. Persuaders can perform the follow-
ings attacks:

3.5.1 Misbehaving Ground Truth. is a road object behaving
against the CAV mission (e.g., pedestrian crossing the road at red
or traffic light blocked on a red state). These attacks have safety,
functional, financial, and privacy impacts on the system. Indeed,
a pedestrian faking a collision can block the CAV, extort money
from the car company/driver, or provoke an emergency braking
threatening passenger safety [27]. Such a behavior questions the
need to register and report such actions using the camera recording
as juridical proof. Indeed, the recording and storage of identifiable
traits of an individual may imply some privacy issues.

3.5.2 Sybil Gating. The Gating process is a filtering/screening
mechanism to determine which objects observations (e.g., V2X
messages or sensor measurements) are valid candidates to update

existing objects tracks. Gating aims primarily to reduce unneces-
sary computation during data association and tracks maintenance
processes [11]. Therefore, an attacker could create valid virtual
candidates to increase the computation load of Data Processing. Al-
though lidar spoofing is possible [1], its feasibility in dense or/and
highly dynamic scenario may be unrealistic. Indeed while the tar-
geted vehicle is moving fast or is highly surrounded by Road Objects,
aiming its lidar to achieve a detection is challenging. However, the
creation through V2X communication of ghost vehicles [28] fitting
the gate conditions is achievable. Therefore, the attacker could cre-
ate Sybil Attacks to disable the filtering benefits of the Gating. We
define such attack as Sybil Gating (Figure 2).
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Predicted Node Position

2

1A

1D

1B

1

1E

1C

i j

Track

3

Malicious Association
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Figure 2: Sybil Gating

3.5.3 Tracking Poisoner. Tracking algorithms aim to predict
the state of an object at the next step according to the measurement
of object state at the current step. Thus, the system must update
each track of its tracking database to ensure the next prediction [11].
However, it remains unclear how to perform the track management
in pseudonymous V2X communication [29]. According to the Euro-
pean Certification Policy [30], a vehicle can contain simultaneously
valid pseudonymous certificates. As mentioned, a vehicle can cre-
ate a ghost vehicle per pseudonymous certificates. Without proper
trustworthiness mechanisms, the ego-CAV will have its tracking
database poisoned by tracks of ghost vehicles (Figure 3).

Thus, we called such attack Tracking Poisoning. Also, such attacks
require to adapt existing tracks update mechanisms. Indeed without
proper tracks update, these attacks could impact the association
process which aims to find the most plausible acquisition-to-track
association.
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3.5.4 FusionManipulator. Association algorithms aim to search
the most likely acquisition from each source observation set (e.g.,
sensor measurements or V2X messages) that share the same de-
tected object as subject. Therefore, a Fusion Manipulator has multi-
ple ways to manipulate the association process.

First, an attacker can increase the computation time by increas-
ing the number of potential measurements (Sybil Gating or/and
Tracking Poisoner). For instance, Merdrignac et al., [3] proposed a
perception system associating lidar measurements and V2X mes-
sages. Despite working with few connected pedestrians, their sys-
tem does not scale in dense scenarios. Indeed, the perception system
associates each lidar observations within the Gating area, which is
the Global Navigation Satellite System (GNSS) error defined as a
circle of 5 meters radius around the GNSS position of the pedestrian
emitting V2X messages. Thus, we can assume that the increasing
number of potential associations between lidar measurements-V2X
Tracks in an urban scenario leads to an increase in the association
time.

Second, an attacker can provoke conflicting acquisition between
two acquisitions. For instance, let us consider a Green Light Optimal
Speed Advice (GLOSA) system that uses camera acquisition to
verify the content correctness of a SPaTmessage [2]. AMisbehaving
Ground Truth attacker alters the physical signal state of a traffic
light [17]. Hence, the perception system would disapprove all SPaT
message thinking that the camera acquisition represents the correct
state.

4 SECURITY GOALS MODEL
To secure a CAV perception, both identifying and defining proper se-
curity goals against identified attackers are mandatory. This section
defines such security goals. First, we identify security countermea-
sures based on the attackers defined in Section 3. Then, we derive
the security goals model from the identified countermeasures. Fi-
nally, we evaluate the model against standardized models.

4.1 Attackers Countermeasures
This section identifies security countermeasures for each attacker
defined in Section 3.

4.1.1 Security Goals for Sensor Disrupter. To do so, we de-
fine the security goals for a Sensor Disrupter which regroups Sensor
Illusion, Sensor Blindness, and Evil Sensor Calibrator.

Sensor Illusion requires mechanisms which assess the trustwor-
thiness of sensor measurements. Approaches checking the mea-
surement consistency assume that a ghost (e.g., Radar) or spoofed
measurements are not or hardly repeatable. Therefore, the use of
metrics such asObject Existence [13] computed on the object past de-
tections allows to down-weight newly appearing and inconsistent
objects during the fusion process.

Sensor Blindness attacks target the availability of sensor mea-
surements. Therefore, it is crucial to ensure the redundancy of Data
Acquisition. Current solutions include hardware redundancy (re-
dundant sensor) or data redundancy (different sensor type). For
instance, SPaT messages can provide an accurate state of a traffic
light while the camera is under Sensor Blindness.

Evil Sensor Calibrator targets the sensor integrity. Therefore, the
security goal to ensure is physical integrity. Indeed, a sensor should
not be easily manipulated or moved. For instance, tamperproof
hardware can store valuable data (e.g., detection algorithms). Also,
the access to the sensor settings must be restricted. Thus, Access
Control is mandatory to identify and to authenticate authorized per-
sonnel. Hence, binding authorized actions to a person profile limits
its actions on the sensor according to its function (e.g., developer,
mechanic).

Ground Truth Falsifier requires to harden the physical structure
of Road Objects to ensure their Phenotype integrity and availability.
For instance, the use of anti-graffiti coatings is a solution to avoid
the alteration of road signs.

Overall, Accountability is a significant security goal against a
Sensor Disrupter. Indeed, the sensor inability to perform its task
must be recorded to understand the causes of misperception. For
instance, if the radar detects an object forward but the camera does
not, an analysis of the images recorded by the camera can explain
that the mis-detection was due to the dense fog which blinded
the camera. However, the global acceptance of this mechanism is
unsure due to privacy concerns. For instance, the recording of a
person face to identify and punish the author of road marks forgery
is a possible option [21]. But, it requires a strict Privacy Policy
regarding the data recorded by the camera of a road infrastructure
or a CAV.

4.1.2 Security Goals for a Malicious Communicator. As
mentioned and depicted in Figure 5, previous work defined current
VANET security goals following STRIDE [31] or CIA models. Such
goals (e.g., authenticity) are sufficient to define standardized secu-
rity countermeasures in fully adversarial network conditions [9].
For instance, these mechanisms include cryptographic authenti-
cation of all messages to exclude unauthorized participation [32]
or message semantic analyzer (e.g., ASN.1 encoding) to exclude
unauthentic message formats [33].

However, against recent attackers such as a Voyeur, standardized
countermeasures are ineffective. Thus, the need for new security
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goals is necessary. Although mentioned [7, 19], the need for Linka-
bility and Anonymity as distinct security goals remain unsettled.
Despite Privacy recommendations from the European C-ITS Plat-
form group [30], efficient countermeasures such as pseudonym
change in V2X communication are still unsolved [34]. Despite com-
mon belief, it is the association algorithm and not tracking that
decides whether two observations (e.g., track, sensor measurement
or V2X message) belong to the same observed object [11]. In the
sensor domain, range sensor measurements may be incorrect and
anonymous. Therefore, it is essential to define the temporal window
between two messages which disallows an association algorithm
to match two observations based on just their dynamic state.

Communication Deceiver requires the use of trustworthiness coun-
termeasures which regroups:

• Consistency mechanisms that check how often the emitting
node state deviates from the predicted normal behavior (e.g.,
Kalman Filter [29]). Unlike Voyeur Linkability, V2X messages
linkability is necessary for automotive perception. Indeed
to track the V2X node state, the association algorithm must
associate each V2X messages to its corresponding tracks.

• Plausibility mechanisms which rely on plausibility rules (e.g.,
maximal emitting distance) [29], multi-source checking [2],
or single source various means checking [10]. The latter
compares the object state contained in the V2X message to
the measured object state from the communication radio
wave (e.g., Doppler Shift).

• Reputation mechanisms which rely on the computation of
trust score relative to a V2X node behavior [14]. The Scope of
node trust can be global or local. Local trust implies that the
trust value of a node is computed in the vehicle using trust
mechanisms (e.g., Consistency and Plausibility mechanisms).
Local trust defines a subjective opinion of the perception
system towards a V2X node and therefore should not be
extended in a cooperative system to avoid badmouthing at-
tacks [14]. Whereas, global trust values are computed by a
global authority (Public Key Infrastructure) and acknowl-
edged by all authenticated VANET members. A specific au-
thority of the Public Key Infrastructure (e.g., Misbehavior
Authority) collects misbehavior reports and decides on revo-
cation of node [35].

Overall, Malicious Communicators also require the following
security goals:

• Accountability is mandatory to report and revoke malicious
nodes.

• Adaptability is a major security goal for communication. In-
deed, most of the related work assume that cryptographic
algorithms will ensure security goals such as Confidentiality
and Integrity. However, few questioned the algorithms obso-
lescence due to advances in quantum computing. Therefore,
without a backup plan, communication system relying on
Public Key Infrastructures based on these algorithms are
vulnerable [36]. The need to define a system able to adapt by
supporting other algorithms in case of such attacks becomes
mandatory. For instance, the SCMS PKI uses such system
thanks to the integration of specific authorities named Elec-
tor CAs [35].

4.1.3 Security Goals for an Evil Mechanic. Evil Mechanics
are difficult to counter because non-expert can hardly detect the ma-
licious actions of an expert. However, some security requirements
can be implemented to prevent such attacks.

Security goals against In-vehicle Manipulator attacks include
Integrity, Availability, Access Control, and Non-Repudiation. To per-
form In-vehicle Manipulator attacks, an Evil Mechanic will first try
to access the hardware or the data. Therefore, Access Control mech-
anisms are important to ensure that only authorized personnel can
access the data. For instance, such mechanisms include multiple
authentication factors to ensure that the personnel or installed pro-
grams are authorized to access such data.Authorizationmechanisms
restrict actions from an Evil Mechanic or malware. Instructions to
modify Data Storage should be signed using asymmetric cryptogra-
phy to avoid communication alteration, hardware replacement or
the spoofing of administrator session. Also, Integrity mechanisms
mandatory to avoid the removal of any hardware components and
ensure the overall availability of the perception system. Finally, Ac-
countability mechanisms (e.g., events logs) is mandatory to monitor
actions performed a hardware and its data. For instance, during a
hardware replacement, the hardware logs indicate if it is new or
already used.

Security goal against In-vehicle Miner attacks focus on Confiden-
tiality. As mentioned, Data Storage contains valuable information
such as private information or fusion algorithm. Therefore, they
should be encrypted.

4.1.4 Security Goals for a Fusion Persuader. We define se-
curity goals for a Fusion Persuader that require the following Trust-
worthy mechanisms:

• Consistency mechanisms that detect a potential deviation
between the estimated state and the observed state of a data
source.

• Plausibility mechanisms that confront multiple data sources
and detect disagreements among sources. For instance, the
disagreement regarding a traffic light state between a cam-
era recording and a SPaT message will raise an anomaly
report [2].

• Reputation mechanisms that compute the opinion value of
the perception system regarding a perceived Road Object by
using sensor confidence and V2X node trust metrics. The
former assigns a weight to the sensor observations based on
sensor past performances such as the number of successful
detection of a Road Object. The latter is the trust computed
based on the detection number of malicious messages emit-
ted by a V2X node.

Also, Accountability mechanisms require to record every con-
flict between data sources that occurs during the fusion process.
The aftermath goal is to provide meaningful reports to the Misbe-
havior Authority [9]. For instance, law enforcement authorities or
insurance companies can request these reports to verify the events
occurred in an accident. But also, it could help OEMs to detect,
understand, and improve vehicles automation. Experts can extract
events logs and misbehavior reports to reconstruct the road scene
and correct potential weaknesses in the cooperative perception.

Also, Freshness mechanisms are mandatory to update the tracks
database. For instance, the temporal freshness of tracks is a criterion
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to remove ghost tracks caused by Sybil Gating attacks or outdated
Road Object tracks that are out of the perception range.

Finally, Adaptability mechanisms require to patch the fusion
algorithms against potential undiscovered weaknesses during the
vehicle lifetime. Moreover, in the case of a detected faulty/malicious
source of acquisition, the system can only rely on its communication
mode or on its local sensors mode to achieve perception [37].

4.2 Proposed Model
Figure 5 presents our security goals model derived from the attack-
ers security goals identified previously. This model includes stan-
dardized security goals used and already defined in VANET [4, 16]
and threat models for computer networks[31]. But Also, newly
identified security goals that we define as follow:

Access   
Control 

Trustworthy

Availability 

Integrity

Nonrepudiation

Adaptability

Accountability

Privacy

Security
Requirements

Confidentiality

Anonymity

Hardware

Software

Phenotype

Data

Identification

Authentication

Authorization

Reporting 
Auditing 

Linkability

Redundancy 

Data Freshness 

Consistency 
Plausibility 

Safety

Security

Security

Perception

Proposal

Standard
Reputation 

Figure 5: Security Goals Model for CAVs

Privacy is the degree to prevent unauthorized parties to obtain
sensitive information. Note that Privacy includes Confidentiality
because sensitive information does not only imply private data but
also confidential data (e.g., source code) [38].

• Anonymity is the degree of identity disclosure of data users.
Thus, Pseudonymity is one degree of anonymity that uses
pseudonyms (e.g., pseudonym certificate) to identify users.

• Linkability is the degree of linking anonymous or pseudony-
mous data to their owner risking a potential disclosure of its
private identity (e.g., home localization).

Trustworthy is the degree of trust assessed by the system re-
garding perceived Road Objects and perception data (Section 2).
Trustworthy mechanisms rely on reputation, consistency, plausibil-
ity security goals.

• Reputation is the perception system opinion of a V2X system
entity. This opinion is subjective. Its validity domain ranges
from local to global.

• Consistency is the degree of temporal plausibility of a Road
Objects behavior or products of behavior assessed by the
perception system along the perception lifecycle (Section 2).

• Plausibility is the degree to which the system verifies that
the perceived data are consistent with the ground truth (Sec-
tion 2). As mentioned, other acquisition sources, Road Objects

model, maximum-minimum thresholds, or Highway Code
can be system ground truth assuming they are trustworthy.

Phenotype Integrity is the degree of protection of the Pheno-
type of a Road Object from malicious alterations.

Accountability is the degree ofmapping security-related events
to system entities.

• Non-repudiation is the degree of actions recognition of the
entity that performs it.

• Reporting is the degree of recording Non-repudiated actions.
• Security Auditing is the degree of prevention, analysis, and
evaluation of occurring, occurred, and potential security-
events within a system.

Adaptability is the degree of attack recovery and defense of a
system against future similar attacks.

4.3 Model Evaluation
This section evaluates our security goal model through the com-
parison Table 3.

Table 3: Security Goals Model Evaluation

Object Data Stage Attacker Model Security Goals STRIDE CIA Proposal

Ego-CAV

Acquisition

Voyeur
Fully Adversarial
Sensor Blindness
Sensor Illusion

Access Control ≈ ✘ ✓
Trustworthy ✘ ✘ ✓
Availability ✓ ✓ ✓
Integrity ✓ ✓ ✓

Accountability ≈ ✘ ✓
Privacy ≈ ≈ ✓

Adaptability ✘ ✘ ✓

Processing
Fusion Manipulator

Communication Deceiver
Sybil Gating

Availability ✓ ✓ ✓
Trustworthy ✘ ✘ ✓
Accountability ≈ ✘ ✓
Adaptability ✘ ✘ ✓

Storage

In-vehicle Miner Access Control ≈ ✘ ✓
In-vehicle Manipulator Availability ✓ ✓ ✓
Tracking Poisoner Integrity ✓ ✓ ✓

Evil Sensor Calibrator Accountability ≈ ✘ ✓
OTA Poisoner Privacy ≈ ≈ ✓

Road
Phenotype

Ground Truth Falsifier Availability ✓ ✓ ✓
Object Misbehaving Ground Truth Integrity ✓ ✓ ✓
≈: the full security goal is not covered as depicted in Figure 5

First, we build this table. We define the Target of Evaluation
which is the perception domain (Section 2). Then, we set the in-
volved entities which are Objects which regroup Ego-CAV and Road
Object. Then, we link each Object to its Data Stages (Figure 1). This
approach avoids speculating on the chosen architecture for data
fusion. Indeed, acquisitions tracking is either decentralized (acqui-
sitions source) or centralized (fusion ECU) [11]. Accordingly, we
relate each Data Stages to a sub-attacker (Table 2). Finally, we match
to each sub-attackers its security goals (Section 4.1).

Second, we compare our proposal to standardized security goal
models such as STRIDE and CIA. Where STRIDE stands for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service,
and Elevation of Privilege. CIA stands for Confidentiality, Integrity,
and Availability. Therefore, both do not consider Trustworthiness
and Adaptability as security goals. An explanation is that both
models were designed for traditional IT environment and not for
the CAV domain. Also, both do not distinguish Authentication and
Identification which is not acceptable in the CAV domain. Indeed,
in the case of Sybil attack on V2X nodes, the system allows a single
identity to authenticate itself using multiple authenticators (e.g.,
Pseudonyms). Finally, STRIDE refers to accountability only through
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non-repudiation. However, CAV domain will rely on trust between
entities and therefore will need security reports fromCAVs to report
malicious Data Objects.

That is, we showed that current models despite being standard-
ized do not answer accurately to the current threats in the CAV
domain, unlike our proposal.

5 DISCUSSION
This paper presented an attacker model and attack types. Our at-
tacker model can also help designers and testers to verify the secu-
rity requirements of their perception system. As mentioned, while
current work demonstrated their feasibility, Section 3.5 highlighted
potential attacks in the domains of tracking and data fusion that
have to be demonstrated.
Current implementations of automotive perception that rely on V2X
and sensor acquisitions never assumed V2X data as a threat [2, 3, 12].
Despite security work related to V2X tracking to detect inconsisten-
cies [29, 39, 40], none studied the impact of malicious tracks in the
tracking database and their impacts on the tracks managements and
the perception fusion. Indeed unlike lidar [19], a location spoofing
of V2X message can produce consistent tracks due to their easy re-
peatability [29, 39]. Therefore, unlike track management for sensors
that removes echoes track after a defined duration, Communication
Deceiver can maintain a false track by frequently emitting plausible
V2X messages. Thus, it can be interesting to study the feasibility
and scalability levels of a Tracking poisoner (e.g., number of false
tracks, living duration of false tracks).
Also, the attacks towards fusion process (gating and association) are
plausible assuming the absence of security counter-measurements
in cooperative perception system. An explanation is that fusion
algorithms are sensor-designed algorithms and do not consider
V2X attacks. Thus, some fusion algorithms may not scale [41, 42]
and an attacker could exploit such vulnerability by increasing the
number of objects to process.
Additionally, these attacker models raise the need to define a se-
cured framework for automotive perception relying on both sen-
sors and V2X. However, current fusion processes are different for
each acquisition source. Indeed, while the association of sensors
observations relies on the observed object state (e.g., localization,
velocity, class), V2X association relies on object meta-data (e.g.,
identifier [43, 44], trust [14]) which do not exist for sensors. Thus,
the V2X-sensor association remains a challenge due to potential
incorrect data in the V2X message that can lead to malicious mis-
associations.
Thus, our model validation requires the definition and implementa-
tion of a secured perception framework using multi-source obser-
vation. A starting point could be the V2X plausibility framework of
Sun et al. [10] combined with the multi-source fusion framework
of Van der Heijden et al. [45].
Finally, the generic attacker model (Section 3.1) can adapt to the
attacker model of Ponikwar et al. [6] for VANET attacks. Both are
extension of the same model [4]. However, for automotive percep-
tion attacks, our model is an extension of Petit et al. [7].

6 CONCLUSION
Secured automotive perception system is the next goal for reliable
perception. However current attackers models did not capture the
entire attack and security goal domains. Indeed, they did not de-
scribe the data lifecycle within a perception system. Therefore, it
was unclear what were the most likely attack scenarios to fool
automotive perception systems.

First, we described a data lifecycle within generic perception sys-
tem model from which we identified its primary assets. Therefore,
we derived an attacker model based on such assets and state of
the art attacks. Following, we determined related countermeasures
then accordingly we defined a security goals model. Finally, we
evaluated such model against standardized models and highlighted
missing security goals.

As a result, this paper showed the need for costless and straight-
forward countermeasures against attacks performed on the sur-
rounding environment. Also, despite the use of pseudonym cer-
tificate, we explained the need to investigate privacy mechanisms
furthermore against Voyeur attacker. Overall, we demonstrated that
sensor and V2X data are untrustable and may lead to new attacks
within data fusion processes which were not designed for an unco-
operative environment. Therefore, we explained the need to revisit
such processes which led to the identification of three trustworthy
sub-goals. Also, we showed the current lack of adaptability coun-
termeasures of a perception system which remains an unsettled
issue. Indeed, few works analyzed the obsolescence of perception
algorithms such as the break of cryptographic algorithms. Finally,
by focusing on the automotive perception, we demonstrated that
current tools for threat analysis are insufficient.

To conclude, we believe standardizing automotive perception
will help security experts to deepen existing automotive security
analysis. As a future work, we will define and implement a general
trustworthy scheme for the automotive perception.
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