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ABSTRACT
Controller Area Network (CAN) is still the most used network
technology in today’s connected cars. Now and in the near future,
penetration tests in the area of automotive security will still require
tools for CANmedia access. More andmore open source automotive
penetration tools and frameworks are presented by researchers
on various conferences, all with different properties in terms of
usability, features and supported use-cases. Choosing a proper tool
for security investigations in automotive network poses a challenge,
since lots of different solutions are available. This paper compares
currently available CANmedia access solutions and gives advice on
competitive hard- and software tools for automotive penetration
testing.
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1 INTRODUCTION
Since the automotive industry is moving towards autonomous driv-
ing, more and more cars are or will soon be connected to a backend
system in the Internet, the security of automotive systems becomes
a crucial factor in the process of developing self-driving cars. With
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additional remotely accessible interfaces, which are needed to en-
able the vehicle-to-internet communication, the attack surface of a
modern car significantly increases. Furthermore, this development
can expose protocols like CAN, which usually only have been used
in the car’s internal network, to remote ports. Since protocols used
for intercommunication between Electronic Control Units (ECUs)
were developed decades ago, they do not introduce any kind of
mechanisms to secure the communication. The combination be-
tween the introduction of new connected interfaces, which are
necessary for the use of self-driving features, and the use of legacy
and potentially unsecured protocols creates a new high-impact risk
in the context of attacks on the car’s IT security. Therefore the eval-
uation of this risk is an important factor in the process of security
testing. To ensure reliable and sufficient testing, professional tools
specifically developed to support automotive protocols are needed.

This paper introduces the most commonly used frameworks,
software and hardware available in the field of automotive secu-
rity testing. Additionally, a method on how to cluster them into
subgroups will be shown. Different criteria valid to conduct an
extensive comparison between the chosen tools will be described,
followed by a survey on the the actual tools. After explaining the
test process for each subject under test, the test results will be con-
cluded. The last paragraph will cover possible aspects that may be
researched in the future.

2 RELATEDWORK
In the area of performance evaluation of CAN drivers the work
of Sojka et. al is mentionable. They performed an extensive tim-
ing analysis of the commonly used driver SocketCAN, in com-
parison with their own solution LinCAN on different Linux Ker-
nels [24][23][8]. This differs from the research proposed in this
paper, since it focuses solely on the driver itself, while we observe
CAN media access devices as a whole. Further research regarding
CAN tools was published by Lebrun et. al in 2016. Lebrun and
Demay introduced CANSPY, a tool for CAN frame inspection and
manipulation, especially built to aid with security evaluations of
CAN devices [13].

Besides the work done on CAN testing, surveys relevant to ana-
lyzing security tools have been conducted in the field of web appli-
cations. For example, Fonseca et. al benchmarked web vulnerability
scanning tools using criteria such as vulnerability coverage and the
false positive rate [3]. Doupe et. al accomplished similar research
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with the evaluation of vulnerability scanners for web applications
in 2010 [1].

3 GENERAL REQUIREMENTS FOR
AUTOMOTIVE PENETRATION TESTING

This section introduces some basic requirements for automotive
penetration testing. A competitive tool should fulfill the follow-
ing requirements. All mentioned requirements are derived from
practical use cases in automotive penetration testing. The require-
ments describe features that are elementary to start with automo-
tive penetration testing and therefore they can be seen as a needed
foundation in the domain of automotive security analysis on CAN.

3.1 Protocol Viewer
A clear way to inspect the traffic on the network is absolutely
necessary to improve the efficiency of automotive security investi-
gations. A security researcher needs an interface which displays
the live traffic and allows detailed investigations on captured data.
A penetration tool has to detect and interpret the used protocol au-
tomatically. In addition to that, such a viewer needs to be extensible
with additional brand specific protocol information. The following
protocols should be supported.

• CAN (ISO 11898)
• Unified Diagnostic Services (UDS) (ISO 14229)
• General Motor Local Area Network (GMLAN)
• CAN Calibration Protocol (CCP)
• Universal Measurement and Calibration Protocol (XCP)
• ISO-TP (ISO 15765)
• Diagnostic over Internet Protocol (IP) (DoIP) (ISO 13400)
• On-board diagnostics (OBD) (ISO 15031)
• Ethernet (ISO 8802/3)
• TCP/IP (RFC 793, RFC 7323 / RFC 791, RFC 2460)

3.2 Packet Manipulation and Fuzzing
Fuzzing describes the process of automatically feeding semi-random
input values to a system and observing its behavior in response to
different inputs. This technique can help in discovering for example
flaws of a protocol’s implementation. An automotive penetration
test tool should be able to fuzz all common automotive and Internet
protocols. A fuzzer with an easy-to-use interface and the capability
of fuzzing and listening on different network interfaces at the same
time should be available in a penetration test tool. The desired
response of a fuzzedmessage often shows up on a different interface,
maybe with a different protocol, or on output pins of an ECU.

3.3 ECU Simulation
Usually, an ECU under test needs a special environment for its nor-
mal operation. This environment has to be simulated with periodic
CAN and UDS messages on a connected bus. For more advanced in-
vestigations, a remaining bus simulation is required. Vector CANoe
for example is specialized in this kind of simulation. For white-
box security tests, this would be the tool of choice for complex
remaining bus simulations [5]. On black- and gray-box security
tests, periodic messages are sufficient to spoof a certain operation

state. Capturing, modifying and periodically replaying of various
messages has to be supported by a penetration test tool.

3.4 Man in the Middle (MITM) Capabilities
In a MITM investigation the penetration device is used to hijack
the connection between two or more ECUs and route the occurring
traffic. The main goal is to gather more information about the CAN
communication and possibly filtering unwanted messages. In order
to investigate the communication from a specific ECU, this ECU
has to be isolated through a MITM attack. An advanced penetration
test tool needs some functionality to setup a MITM proxy between
two CAN or Ethernet interfaces. In addition, functions to filter or
hijack the communication between ECUs are very useful during
black-box security investigations.

4 MEDIA ACCESS LAYER REQUIREMENTS
The mentioned higher level requirements are necessary for efficient
penetration testing in automotive networks. It is possible to derive
the following media access requirements from this previously men-
tioned general requirements. For verification of media access layer
requirements, multiple benchmarks will be created on available
interfaces for the media access to CAN. A performance evaluation
of media access interfaces for automotive penetration tests will be
introduced in section 8.

4.1 Latency
The required time between the initiation of a write to an automotive
network from an user space application until the actual presence of
this data on the bus is crucial for all kind of fuzzing and spoofing
tests. For example, if one wants to respond to a certain message
faster than the legitimate ECU, the latency of the media access layer
has to be smaller than the time it takes for the legitimate ECU to
generate a response.

4.2 TX-Rate
During the investigation of denial of service or flooding attacks on
the CAN bus, a penetration test tool should be capable of creating
enough CAN frames to reach a bus load of 100 percent. To achieve
this load from user space writes, the interface driver, the operating
system and the media access device itself need to be able to handle
writes to the bus faster than the time a message is present on the
bus.

4.3 RX-Rate
A common use case in automotive penetration testing is the sniffing
of firmware updates on the CAN bus. During firmware updates of
ECUs on the CAN bus, usually only the target ECU and the ECU
or the repair shop tester which is delivering an update are allowed
to communicate on the bus. All other ECUs remain silent until the
flashing procedure finishes. This dedicated communication between
only two ECUs on the bus guarantees maximum bandwidth for the
firmware transfer. This also leads to a maximum bus load. A media
access device for penetration tests, the operating system and the
used drivers need to be capable of handing over this bandwidth to a
user space application. Otherwise, the penetration tester is missing
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messages due to performance issues of the device, which leads to
inconsistent results.

4.4 Reliability
For any security investigation in automotive networks, the penetra-
tion test tool needs to be reliable. Often, traces and captures can be
done only once or require extensive preparations to the ECU under
test. Unreliable tools will make difficult security investigations in
automotive networks even harder or lead to wrong results.

5 CLASSIFICATION OF MEDIA ACCESS TYPES
To get an overview of existing open-source automotive penetration
test frameworks, a survey on existing applications and tools for
automotive penetration tests was conducted. This survey focused
on hard- and software interfaces to access automotive networks.
The following table gives an overview of common used solutions
for the media access to CAN.
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Busmaster [16] X
c0f [21] X

can-utils [17] X
CANiBUS [20] X X
CANToolz [19] X X

Caring Caribou [18] X
Kayak [14] X

Metasploit [15] X X
O2OO [29] X

pyfuzz_can [10] X
python-OBD [30] X

Scapy [28] X X
UDSIM [22] X

Wireshark [31] X
Table 1: Overview of used hard- and software for CAN-bus
access in open-source automotive penetration test frame-
works [9][11][26].

With respect to the evaluation of used media access interfaces on
public available penetration test frameworks, the most used media
access interfaces will be taken into account on a performance eval-
uation. In order to be able to compare available CAN media access
solutions for automotive penetration testing, representative groups
for the different interface solutions have been selected. Devices
inside a group have an identical hard- and software architecture,
and will therefore show a similar behavior during benchmarks.

The following list shows the chosen groups for the media access
layer comparison of CAN-bus interfaces:

(1) Native-CAN
The CAN-peripheral module is directly accessible from the
main processor. A BeagleBone Black (BBB) with anAM335x 1
GHz ARM Cortex-A8 processor and a Banana Pi Pro with an
Allwinner A20 dual core ARM Cortex-A7 processor are the

used devices under test in this group. All automotive penetra-
tion test frameworks which use SocketCAN or python-can
are able to use lower layer CAN-bus interfaces from this
group.

(2) Serial Peripherial Interface (SPI)-to-CAN
The CAN-peripheral module is accessible over a SPI connec-
tion. A Raspberry Pi 2 with a MCP2515 SPI-CAN module is
used as Device Under Test (DUT). SocketCAN is the common
way to give an user space application access to the CAN-bus
in this group.

(3) Universal Serial Bus (USB)-to-CANover Serial LineCAN
(SLCAN)
The CAN-peripheral module is accessible over a serial line
communication. The SLCAN protocol is used to access the
CAN-bus from the DUT. An USBtin is used as an interface
in this class. User space applications can either access the
CAN-bus directly over a serial connection, or can connect
to a SocketCAN socket, which is offered by an application
called slcand [2].

(4) ELM327
The ELM327 is an OBD-to-serial interface with a custom AT
command set. As a DUT, an ELM327 with USB-interface is
used. The CAN-bus is accessible over a serial interface.

(5) USB-to-CAN
The CAN-peripheral is accessed over a USB-interface in this
class. As devices under test, a PEAK PCAN-USB FD and a
Vector VN1611 USB-to-CAN adapter are used. Devices inside
this group can require proprietary drivers. For user space
applications, the CAN-bus is accessible through dynamic
linked libraries supported by python-can or SocketCAN sock-
ets [4][7].

6 BENCHMARKING CRITERIA AND
PROCESS

6.1 Test-Setups
Every media access device has to be tested individually and with a
different setup. All tests on media access devices were performed
by user space applications, running with maximum priority by the
root/administrator user and compiled with maximum optimization
settings (where applicable). All the tests involving a USB-to-CAN
device were executed on the same laptop computer. All operating
systems were tested with the minimum amount of modifications
from the moment of installation, limited to the installation of the
required software to run the tests, drivers for the CAN interfaces,
and device trees for the Native-CAN implementations.

• TI AM3358 (Native-CAN)
– Platform: BBB
– OS: Debian GNU/Linux 8
– Kernel: 4.4.54-ti-r93 #1 SMP
– User space application: Compiled program, written in C,
using SocketCAN

• Allwinner A20 (Native-CAN)
– Platform: Lemaker Banana Pro
– OS: Armbian GNU/Linux 9
– Kernel: 4.14.18-sunxi #24 SMP
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– User space application: Compiled program, written in C,
using SocketCAN

• MCP2515 (SPI-to-CAN)
– Platform: Raspberry Pi 2 Model B
– OS: Raspbian GNU/Linux 9
– Platform-specific settings: SPI clock frequency set to 8MHz
– Kernel: 4.14.30-v7+ #1102 SMP
– User space application: Compiled program, written in C,
using SocketCAN

• USBtin (USB-to-CAN over SLCAN)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using SocketCAN

• ELM327 (USB-to-OBD)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Platform-specific settings: UART baud rate set to 460.8 kHz
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using glibc termios

• PEAK PCAN-USB FD (USB-to-CAN)
– Platform: Dell Latitude E5470
– OS: Antergos Linux
– Kernel: 4.15.15-1-ARCH #1 SMP PREEMPT
– User space application: Compiled program, written in C,
using SocketCAN on Linux

• PEAK PCAN-USB FD (USB-to-CAN)
– Platform: Dell Latitude E5470
– OS: Windows 10
– User space application: Python script

• Vector VN1611 (USB-to-CAN)
– Platform: Dell Latitude E5470
– OS: Windows 10
– User space application: Python script

6.2 Test Procedure
All tests were executed with the maximum baud rate supported by
the tested device. This maximum baud rate was 1 MHz for every
device except for the ELM327 which only supports a maximum rate
of 500 kHz.

All tests involved connecting the DUT to a microcontroller and
a logic analyzer for taking measurements. The logic analyzer was
connected to the microcontroller CAN TX and RX pins, in parallel
to the transceiver. The length of the bus connecting the tested
device to the microcontroller was 1.2 meters.

Testing some aspects of the ELM327 was impossible, since it is
supposed to be used as a OBD interface and has limited ability to
work with raw CAN messages. In particular, it can only send raw
CAN frames with 8 bytes of payload, and can not receive CAN
frames with a data length of 0 bytes. Because of these reasons, only
the latency was tested for this interface.

6.2.1 Latency Test. The objective of this test is to measure the
amount of time taken by each tool and framework to forward a

CAN frame from the physical layer to the user application and vice
versa.

In order to test for latency, a microcontroller with CAN capa-
bilities (Espressif ESP32) was connected to the bus and set to send
a CAN frame every 20 ms, while the DUT was configured to re-
ceive these CAN frames and reply as soon as possible with another
frame.[25] A logic analyzer was connected to the receive and trans-
mit lines between the transceiver and the microcontroller, and set to
sample data at 10 million samples per second. Since the maximum
CAN baud rate reachable by the tested devices is 1 MHz, a sampling
rate of 10 MHz is sufficient to capture and parse the individual CAN
frames. A C application was developed using the Sigrok library to
interface with the logic analyzer and capture precise timings of the
time between a CAN frame coming from the microcontroller and
the response coming from the DUT [27].

Given a pair of "request" and "response" CAN frames (where the
request is sent by the microcontroller and the response is sent by
the DUT), we define the latency introduced by the tested device and
framework to be the time passed from the "ACK" field of the request
CAN frame and the "START OF FRAME" field of the response frame.
During this time, the frame is received by the hardware of the DUT
and it is forwarded to the user space application, which immediately
generates the response CAN frame without any processing or delay.
The measured latency therefore represents the time which a CAN
frame takes to travel from the physical layer to the application layer
and back to the physical layer.

It is notable, that the latency measured in this way can never be
lower than ten baud lengths according to the CAN specification,
since between the "ACK" field and the "START OF FRAME" field of
the next frame there always has to be an "END OF FRAME" field
consisting of seven recessive bits and an "INTERMISSION" field
consisting of three recessive bits. However, while achievable on a
microcontroller, such a low latency was never obtained on any of
the tested devices, since they all involve an user space application
running on a non real-time operating system.

6.2.2 TX-Rate Test. The objective of this test is determining how
fast a given device can write frames to the CAN bus, and what is
the maximum data rate it can transmit at. Such a test is important
to verify that a device is capable of flooding the bus with frames
and simulating a high load on the bus.

To execute this test, a small program was written for each tested
software stack that would simply send the same CAN frame one
million times in a loop, while connected to a microcontroller that
would only acknowledge every frame. The CAN lines were probed
with a logic analyzer to measure the time passed between each
frame and statistical data was extracted from these measures.

The transmission rate results are expressed in kb/s. This refers
to the amount of useful information bits that are sent in one second,
which includes the 11 bits of the standard identifier plus any bit
stored in the data fields.

The test was repeated with two different kinds of CAN frames:
Frames without a payload and frames with a maximum payload.
The smaller frames, which still have an effective amount of data
11 bits in the identifier (contained in the "ARBITRATION FIELD"),
were used to test themaximum frame rate achievable by each device.
The longer frames which contain 75 bits of data were used to test



A Survey on Media Access Solutions for CAN Penetration Testing CSCS 2018, September 13–14, 2018, Munich, Germany

the maximum achievable bit rate of each device. The maximum
achievable rates on a CAN bus with baud rate of 1 MHz are 675.6757
kb/s for the test involving longer frames, and 229.1667 kb/s for the
test with the shorter frames.

In this test, there was no noticeable difference in the results
when testing a high-level framework (e.g. Scapy) or the low layer
implementation (e.g. SocketCAN), due to the amount of buffering
done by the operating systems and the relatively low data rate
of the CAN bus when compared to the speed which frames are
processed at. Therefore, only one test setup result is shown for each
tested device.

6.2.3 RX-Rate Test. The objective of this test was determining
how fast a given device can read frames from the CAN bus, and
what maximum data rate it can receive at. This test is important for
determining if a device can receive all CAN frames in a situation
of high bus load, such as when an ECU firmware is transmitted as
part of a software update.

To execute this test, the microcontroller was programmed to out-
put a CAN frame one million times with the smallest delay allowed
by the CAN specification between one frame and the next. In order
to achieve maximum consistency in the transmission interval, as
well as sending the same number of frames whether they were be-
ing acknowledged or not, the CAN frames were transmitted using
the Inter-Integrated Circuit (IC) Sound (I2S) peripheral of the ESP32
microcontroller.

The test was repeated multiple times for each device, with both
short (no payload) and long (8 bytes payload) frames. The time
between the start of two consecutive frames was 48 bauds for the
short frames, and 111 bauds for the long frames, giving an effective
bit rate of 675.6757 kb/s for long frames and 229.1667 kb/s with
short frames. During each test sequence, the number of frames
received by the DUT was recorded with a simple program, and the
test was repeated 1000 times, for a total of 109 frames sent to each
device for both long and short frames.

7 EVALUATION OF MEDIA ACCESS DEVICES
7.1 Latency Evaluation
The results for the latency tests are presented in the form of his-
tograms, Empirical cumulative distribution functions (ECDFs) and
box plots.

The vertical axis of the histogram represents the relative fre-
quency of the time measured in one request-response pair. The
most desirable result would be to have a single sharp peak cen-
tered as close to 0 ms as possible and a wide curve indicates a large
variance in the measurements. The presence of multiple peaks in
many histograms might indicate that a buffer is being filled asyn-
chronously with the received CAN frames and it is only being read
after a timeout expires, or it might be due to the operating system
executing code for handling interrupts from other peripherals.

The ECDF plots present the integral of the data shown in the
histograms. Given a point (x , y) in these plots, y is the probability
that a frame was replied to in time less than x ms. The intersection
between the curve and the 0.5 horizontal line in the ECDF plot
shows the average latency for that device, while the upmost part
represents the worst case scenario.

Figure 1: Latency histogram and Empirical distribution
function for USB-to-CAN devices, all tested on the same lap-
top computer.

All SBCs were able to reply to CAN frames with less than one
millisecond of latency, with the Banana Pro consistenly achieving
times under the tenth of a millisecond.

7.2 TX-Rate Evaluation
When testing the transmission speed of the PEAK PCAN-USB FD
and Vector VN1611 USB-to-CAN interfaces, on any framework or
operating system, the performance was always good enough to
obtain a 100% utilization of the bus. Any variance found in the
results of these interfaces is only present in the first couple of
frames, after which the buffer becomes full and any subsequent
sent frame will enter the bus as soon as it becomes free.

SBCs with native interfaces could almost constantly send enough
CAN frames to reach 100% bus load, but had a larger variance in
the results, likely due to other processes sharing time on the limited
CPUs.

The bottleneck for the transmission speed of the USBtin is the em-
ulated USB Universal Asynchronous Receiver/Transmitter (UART)
device, which appears to operate at a maximum speed of 411 kb/s.
The speed is further limited by the overhead of the SLCAN proto-
col, which is introduced by the use of hexadecimal characters and
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Figure 2: Latency histogram and Empirical distribution
function for Single Board Computers (SBCs) using Socket-
CAN.

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 57.9261 0.94254
Raspberry Pi 2 MCP2515 + SocketCAN 66.0764 4.0136

BBB + SocketCAN 225.2256 14.7024
Banana Pro + SocketCAN 209.29 7.054

PCAN-USB FD + SocketCAN 229.1065 0.046076
PCAN-USB FD + python-can on windows 228.5465 1.6716

VN1611 + python-can 228.568 0.042923
Table 2: Results for TX-Rate evaluation with short CAN-
frames on the tested media access devices. σ is the standard
deviation computed on the taken measurements.

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 138.7733 7.3381
Raspberry Pi 2 MCP2515 + SocketCAN 348.8258 9.6974

BBB + SocketCAN 672.3208 12.6014
Banana Pro + SocketCAN 649.1451 5.1531

PCAN-USB FD + SocketCAN 675.5985 0.2309
PCAN-USB FD + python-can on windows 674.9153 0.052812

VN1611 + python-can 674.9029 0.13812
Table 3: Results for TX-Rate evaluation with long CAN-
frames on the tested media access devices.

Figure 3: Box plots of the measured latency for the tested
devices. Whiskers represent the 5%� and 995%� quantiles.

the framing of SLCAN commands, more than halving the effective
bitrate.

The MCP2515 SPI-to-CAN interface has also a bottleneck. While
the speed of the SPI interface would be sufficient to transfer all the
commands necessary to send a CAN frame in a time smaller than
the duration of the CAN frame itself, each successful transmission
enables the TX0IF flag in the CANINTF register of theMCP2515 [12].
When this happens, the interrupt pin is signaled and the MCP2515
driver on the operating system will query the interface for the
pending interrupt. The three SPI commands necessary for reading
and resetting the TX0IF flag and the interruption caused by the
driver amount to a total overhead of approximately 70 µs for each
sent CAN frame when the SPI clock frequency is set to 8 MHz.

7.3 RX-Rate Evaluation
Both Vector VN1611 and PEAK PCAN-USB FD did not miss a single
frame out of the 109 when running on windows, which is expected
because of the large amount of free Random Access Memory (RAM)
to be used as buffer and the low overhead introduced by USB. When
running on Linux, approximately 75000 packets were not received
in the test with short frames for unknown reasons, while the test
with long frames showed no lost frames. Out of the 1000 tests
executed with 106 frames each using the PEAK PCAN-USB FD
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µ [kb/s] σ [kb/s]

USBtin + SocketCAN 89.0387 0.0001
Raspberry Pi 2 MCP2515 + SocketCAN 217.5796 2.8753

BBB + SocketCAN 94.3395 1.4791
Banana Pro + SocketCAN 228.855 1.5459

PCAN-USB FD + SocketCAN 229.1495 0.028675
PCAN-USB FD + python-can on windows 229.1667 0

VN1611 + python-can 229.1667 0
Table 4: Results for RX-Rate evaluation with short CAN-
frames on the tested media access devices.

µ [kb/s] σ [kb/s]

USBtin + SocketCAN 179.9568 0.0020
Raspberry Pi 2 MCP2515 + SocketCAN 482.6823 16.6219

BBB + SocketCAN 674.4699 2.2591
Banana Pro + SocketCAN 675.5324 0.30141

PCAN-USB FD + SocketCAN 675.6757 0
PCAN-USB FD + python-can on windows 675.6757 0

VN1611 + python-can 675.6757 0
Table 5: Results for RX-Rate evaluation with long CAN-
frames on the tested media access devices.

under Linux, 535 successfully received all frames, while the others
lost an average of 161 frames each.

While SBCs with Native-CAN interfaces performed acceptably
with long frames, with both missing less than 0.2% of the frames,
the BBB struggled with short frames. More than half of the short
frames were not received by the BBB, likely due to the single core
CPU being overwhelmed by the large number of interrupts. This
result highlights how important it is to have more than one core,
since the Allwinner A20 on the Banana Pro only lost 0.14% of the
frames.

Similarly to what happened in the transmission speed test, the
speed of the MCP2515 is bottlenecked by the way the interrupt
flags are handled. The number of missed frames on the MCP2515
is higher for long frames than it is for short frames. This is caused
by the interrupt flag not being turned off in the short frames test,
because there is no time to do so between a frame and the next.
With long frames, the interrupt flag is turned off by the driver
because no new frame is received immediately and this requires the
transmission of three extra SPI commands and consequently a waste
of time that causes the loss of an incoming frame. Interestingly,
lowering the SPI clock frequency improves the speed at which the
MCP2515 driver receives frames because it causes less switches of
the interrupt flags.

SLCAN is once again the bottleneck for the USBtin, whichmissed
a large amount of both long and small frames. It is notable that
there is very little variance in the results gathered from the USBtin,
since in every single test it received exactly either 388532 or 388533
short frames, and either 266333 or 266339 long frames.

8 EVALUATION OF PENETRATION TEST
FRAMEWORKS

While on the laptop computer Scapy introduces a fraction of a
millisecond of latency, it affects the less powerful SBCs in a harder
way, adding several milliseconds.

Figure 4: Latency histogram and Empirical distribution
function for frameworks using USB-to-CAN devices, all
tested on the same laptop computer.

Also can-utils as a Linux framework was tested, by using a bash
script to read a single CAN frame with candump and sending a
response with cansend. However, the overhead introduced by the
creation of a new process for every sent frame renders can-utils
always inferior to any other framework on any platform.

The CAPL scripting language by Vector is limited when com-
pared to other general purpose languages like python, and doesn’t
show better results in terms of latency than Scapy or python-can
[6].

9 CONCLUSION AND FUTUREWORK
None of the investigated tools and frameworks showed an error-free
performance on Linux. Proprietary tools on Windows performed
very good overall. The python-can framework delivered good re-
sults on both tested operating systems, Linux and Windows. Fur-
thermore, this framework supports both professional and low-cost
media access devices.

Very popular tools like the ELM327 or USB-to-CAN over SLCAN
devices had a bad outcome in our performance evaluation. These
tools aren’t usable for advanced penetration tests with higher CAN
baud rates.

SBCs are a very good alternative to professional CAN media
access devices. The availability of a full-featured operating system
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Figure 5: Latency histogram and Empirical distribution
function for SBCs using different frameworks.

creates a high level of usability in a wide variety of applications. The
tested devices are available for less than 50 euros. This fact brings
SBCs into the same price range as popular CAN interfaces like the
ELM327 or USB-to-CAN over SLCAN devices. However, running
advanced frameworks like Scapy on these low-power computers
introduces a large overhead.

Professional CAN tools for automotive engineering tasks showed
the best results in terms of reliability and transmission speed. How-
ever, these tools are of course much more expensive than SBCs.

Inspected automotive penetration test frameworks showed only
very limited penetration test capabilities. Most tools only support
one specific use case. An open source tool with support of various
car brands and proprietary automotive protocols is not available
yet. On the other hand, commercial tools do not perfectly fit for
penetration testing tasks and are very expensive in general. Also
the fact that commercial tools are closed source software products
decreases the suitability and flexibility for specific penetration tests.
To improve automotive penetration testing in general, comprehen-
sive open source tools which fulfill the mentioned requirements
from section 3 are necessary. This paper showed that the soft- and

Figure 6: Box plots of the measured latency for the tested
frameworks. Whiskers represent the 5%� and 995%� quan-
tiles.

hardware interfaces, python-can and SocketCAN, are appropri-
ate for the implementation of advanced automotive penetration
frameworks.

In the future, our research in the area of automotive penetration
testing tools will be focused on developing a new framework based
on existing open-source software. The experience gathered during
the work for this paper will serve as a base of requirements when
designing the tool. Later, similar tests will be conducted to evaluate
and verify the framework’s performance.
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