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ABSTRACT
Reinforcement learning (RL) has advanced greatly in the past few
years with the employment of effective deep neural networks
(DNNs) on the policy networks [16, 23]. With the great effective-
ness came serious vulnerability issues with DNNs that small ad-
versarial perturbations on the input can change the output of the
network [33]. Several works have pointed out that learned agents
with a DNN policy network can be manipulated against achiev-
ing the original task through a sequence of small perturbations on
the input states [10]. In this paper, we demonstrate furthermore
that it is also possible to impose an arbitrary adversarial reward
on the victim policy network through a sequence of attacks. Our
method involves the latest adversarial attack technique, Adversarial
Transformer Network (ATN) [1], that learns to generate the attack
and is easy to integrate into the policy network. As a result of our
attack, the victim agent is misguided to optimise for the adversarial
reward over time. Our results expose serious security threats for RL
applications in safety-critical systems including drones [8], medical
analysis [26], and self-driving cars [30].
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1 INTRODUCTION
Recent years have seen great advances in reinforcement learning
(RL). Owing to successful applications of deep neural networks on
policy networks [23], RL has surpassed human-level performance
in Atari games [23] and in the game of Go [32]. It is seeking its way
into security-critical applications like self-driving cars [30].

While being effective, deep neural networks are known to be
vulnerable to adversarial examples, small perturbations on the in-
put that make the network confidently predict wrong outputs [33].
Huang et al. [10] have shown that deep policy networks are no
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exceptions. A sequence of small perturbations on the environment
(Atari game pixels) result in the agent performing significantly
worse on the given task. Many follow-up works have investigated
further vulnerabilities of deep policy networks [15, 19] and pro-
posed strategies to make them more robust [2, 20, 22, 28, 29].

In this work, we show that a sequence of small attacks on the
deep policy network can not only make the agent underperform on
the original task, but also manoeuvre it to pursue an adversarial goal.
For example, given a self-driving vehicle trained to transport goods
from a seaport to a sorting centre, an adversary applies a sequence
of perturbations on the vehicle’s sensor to deliver the goods to the
adversary’s property, without altering the vehicle’s policy network.
Such an attack would be more appealing to the adversary than
simply making the agent fail. The attack we consider is therefore
realistic and relevant.

We build our threat model as a perturbation network, which, to-
gether with the victim’s policy network, becomes a policy network
that pursues the adversarial goal. Specifically, assume that agent a
follows the policy network f to maximise the original reward rO
in the long term. Our threat model is represented as a feed-forward
adversarial transformer network (ATN) [1] д : X → X . д produces
small perturbations over input sequences such that the agent’s
policy network over the perturbed inputs f (x + д(x)) pursues the
adversarial reward rA , rO . For making the perturbations small,
we project the adversarial perturbation д(x) onto the ℓ2 ball of
radius p.

We train and evaluate our threat model over agents trained for
the Pong Atari game. Our adversaries successfully make the agents
pursue the new, adversarial goal (hitting the centre 1/5 region in
the enemy’s score line) through a sequence of quasi-perceptible
perturbations over the input pixels.

Although the experimental result on Pong does not yet readily
reflect the vulnerabilities of RL-based autonomous driving, we pro-
vide the first results that systems of autonomous transportation
agents have a potential to be exploited at a large scale for the inter-
est of an adversary. We believe we must already begin discussions
around potential security loopholes of actual self-driving systems
before they are readily available to public; this work is starting this
crucial discussion in the context of current level of RL-based agents.

This paper contributes the following: (1) a threat model that
generates a sequence of perturbations that manoeuvre a policy net-
work to pursue an adversarial reward at test time and (2) empirical
evidence that the suggested threat model successfully achieves the
adversarial goal. Our work exposes crucial yet previously unseen
security risks of real-life deployment of RL based agents.
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2 RELATEDWORK
We describe prior work in three relevant areas: (1) reinforcement
learning, (2) machine learning vulnerability, and (3) vulnerability
of deep policy networks. Our work will be discussed in the context
of those prior literature.

2.1 Reinforcement Learning
Reinforcement learning (RL) enables agents to learn by interacting
with the environment to achieve long-term rewards. The advantage
of not requiring per-action supervision has attracted much research
in the field in application areas that involve long-term and complex
action-reward structures including boardgames [34] and inverse
pendulum problems [4].

Development of highly performant deep neural networks (DNN) [16]
has trickled down to the effective deep policy networks (Deep Q-
Networks, DQN) for RL. Mnih et al. [23] have first applied the DQNs
to learn to play 43 diverse Atari games, and have demonstrated
super-human performances.

Deep reinforcement learning is an active area of research. Many
improvements to the algorithms have been proposed in the last
years. Double Q-learning [35] and dueling networks [36] were
significant steps forward for the usability of DQNs. Among the
most widely used improvements is also prioritized replay [31],
which we employ in our method. As a public contribution, OpenAI
has collected and released the Atari game environments (OpenAI
Gym, [5]). Our experiments on the game of Pong are built on the
baseline implementation of DQN by OpenAI [6]. We also use the
pre-trained Pong agents from [6].

2.2 Attacking Machine Learning Models
While fragility of learnedmodels has been studied for a long time [13,
18, 21], it has received more attention in the recent years after
deep neural networks were found to be vulnerable to human-
imperceptible adversarial perturbations [33].

2.2.1 Victim Models. Most frequently used victim models for
adversarial attack research are classification models: given an in-
put, predict the corresponding class [9, 24, 25, 27]. Other works
have verified the vulnerability of models for generative [14], and
detection and segmentation [37] tasks.

Huang et al. [10] first showed that deep neural networks are
vulnerable for reinforcement learning tasks. Our work also studies
the model vulnerability in the RL setup. We will compare our work
against [10] and follow-up works in §2.3.

2.2.2 Targeted Versus Non-Targeted Attacks. Researchers have
considered two types of adversarial attacks against models: ones in-
ducing any change in prediction (non-targeted) and ones inducing
a specific prediction (targeted) [7, 9]. This work considers an ana-
logue of targeted attack in the reinforcement learning setup. Our
attacks can not only make an agent fail, but also make it actively
pursue an adversarial goal.

2.2.3 Attack Algorithms. Since the first discovery of the im-
perceptible adversarial examples [33], researchers have developed
more efficient, more efficient, and more resilient adversarial pertur-
bation algorithms [9, 17, 24, 25, 27]. In particular, Baluja et al. [1]

have proposed the Adversarial Transformation Networks (ATN).
Unlike prior works that generate perturbations by computing gradi-
ents ∇x f (x) from the target network f , ATN is a learned function
д that transforms the input x into an adversarial perturbation д(x)
such that the victim network f is fooled when x + д(x) is given.

2.3 Attacking Agents
Huang et al. [10] have shown for the first time that deep policy
networks are also susceptible to adversarial perturbations; small
perturbations that would not interfere with human performance
have significantly reduced the test time reward for the agents in
various Atari game environments. They have further verified that
the perturbations transfer across agents pursuing the same task.
Independently, Kos et al. [15] have also proposed adversarial attacks
that reduce the test time rewards. Unlike [10] that attacks the agent
on every frame, they have considered timing attacks where attacks
are performed intermittently. Many follow-upworks have expanded
the research frontier in different directions.

Researchers have considered injecting adversarial perturbations
on the environments during training to learn policy networks that
are more robust at test time. Pinto et al. [29] and Pattanaik et al. [28]
have suggested aminimax training objective for the agent, where an
add-on adversary continually injects reward-minimising changes
on the environment. As a result of this training, they have reported
better generalisation and robustness against adversarial attacks at
test time.

In contrast to this line of work where the adversary only strives
to make the agent fail on the original task, a few studies have
considered driving the victim towards a certain state or goal. Lin
et al. [19] have proposed the enchanting attack in which the ad-
versary sequentially perturbs the input states (frames) st for time
steps t = 0, · · · ,H − 1 to guide the agent towards a predefined
adversarial state sA at time t = H . While sharing similarities, our
adversary imposes an adversarial reward rA on the victim, instead
of an adversarial state sA.

Behzadan et al. [2] have proposed the Policy Induction Attacks.
In this attack, the adversary first trains a policy network (DQN)
with an adversarial reward rA. Using the trained policy, it crafts a
sequence of targeted adversarial perturbations that lead the victim’s
DQN to a sequence of actions leading to rA. While related, their
attacks are applied during training to make the agent learn the
adversarial reward. Our attacks, on the other hand, are applied at
test time and do not explicitly model a secondary DQN for planning
actions; we train a feed-forward state perturbation module that
is added on the input stream of the victim DQN. We adapt their
method as a baseline to our setting.

3 BACKGROUND
In this section, we provide background on the reinforcement learn-
ing (RL) setup and techniques, and adversarial attacks in general.

3.1 Reinforcement Learning
The RL agent is assumed to be interacting with the environment
through a Markov Decision Process (MDP) [3], specified by the 5-
tuple (S,A,T ,R,γ ), where S andA are the state and action spaces,T
is the transition model, R is the reward for the agent, and 0 < γ < 1
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is the discount factor. An MDP is a stochastic process for t ≥ 0 that
depends on the agent’s action sequences a0,a1, · · · . Specifically,
given a state st ∈ S and action at ∈ A taken by the agent, the
next state is determined stochastically by the transition model
st+1

d
∼ T (st ,at ), and the reward is given by R(st ,at ). The goal of

RL is to find the optimal policy π : S → A that maximises the
discounted reward ∑

t ≥0
γ tR(st ,π (st )). (1)

One of the most promising approaches to this problem is the
Q-learning paradigm, also referred to as backward induction [3].
We define an auxiliary Q-function Q : S ×A→ R that returns the
discounted future reward attained, given a state-action pair at time
t , and following the optimal policy afterwards. Once we have access
to the Q-function, we can obtain the optimal policy by computing
π (s) = argmax

a∈A
Q(s,a).

In Q-learning, Q is initialised randomly, and then approximated
by sequential Bellmann updates [3]:

Q(st ,at ) ← R(st ,at ) + γ ·max
a

Q(T (st ,at ),a) (2)

A Deep Q-Learning Network (DQN) models Q as a deep neural
network f that takes the state st as input and returns a vector of
scores over the actions at as output [23]. The training objective is
given by

min
ϕ

E
st ,at

[(
y −Qϕ (st ,at )

)2]
(3)

where y := R(st ,at ) + γ · E
s
[max

a
Qϕ′(T (st ,at ),a)] is the target

Q value computed separately via a target DQN parametrized by ϕ ′.
Periodically, ϕ ′ is set to ϕ and then kept fixed again. This improves
training stability. During training, exploration of the state space
yields obervation tuples (st ,at ,T (st ,at ),R(st ,at )). These are stored
in a replay buffer and later used to approximate the training ob-
jective. Prioritized replay [31] implements this replay buffer as a
priority queue, with priorities set to the temporal difference er-
ror |y −Qϕ (st ,at )|.

Applying deeply learned policy networks has led to many break-
throughs in performances for RL. In this paper, we consider attack-
ing DQNs by imposing an adversarial policy through sequential,
small perturbations on the states st at test time.

3.2 Adversarial Attacks
While deep neural networks have enjoyed super-human perfor-
mances in various tasks, including reinforcement learning, they
have been found to be susceptible to small (in the range between
imperceptible to semantics-unchanging) adversarial perturbations
on the input [33].

Given a learned model f : X → Y (e.g. a classifier) and an input
x , we say that an additive input perturbation δ is an adversarial
perturbation of x for f if δ is small (e.g. | |δ | |2 < ϵ for some ϵ > 0)
and the new output f (x + δ ) is significantly different from the orig-
inal f (x) (e.g. a different class prediction). Omnipresence of such
examples throughout the input space against most existing neu-
ral network architectures has spurred discussions over the safety

of neural network applications in security-critical tasks, such as
self-driving cars.

For generating adversarial perturbations, people have mostly
considered using diverse variants of the gradient over the input [9,
24, 25, 27]. The simplest of them is the fast gradient sign method
(FGSM, [9]) which computes the following quantity:

δ = −ϵ · sgn(∇x f y (x)) (4)

the negative signed input gradient for the prediction of class y,
the argmax prediction by f . While being simple and effective, this
requires expensive gradient computation for every input x and is
hard to integrate into other learning models.

Baluja et al. [1] have proposed the Adversarial Transformer
Network (ATN), which, instead of relying on gradient computations,
obtains the perturbations through a learned feed-forward network
д(x). The network is learned through the following objective

min
θ
E

x∼D
[f y (x + дθ (x))] (5)

s.t. | |дθ (x)| |2 ≤ ϵ for all x (6)

via stochastic gradient descent over multiple training images x ∼ D.
In our work, we use the ATN as the perturbation generator against
the DQN: Q(x + дθ (x)). We will explain the method for training дθ
to impose adversarial reward on Q in the next section.

4 THREAT MODEL
We consider an adversary whose goal is to make a trained victim
agent interacting with an environment for the original reward rO
to maximise an arbitrary adversarial reward rA through a sequence
of state perturbations. An overview of our approach is in Figure 1.
In this section, we describe in detail how the perturbations are
computed to guide the agent towards the adversarial reward rA,
and then discuss key assumptions for our threat model.

4.1 Attack Algorithm
See the right half of Figure 1 for an overview of our attack paradigm.
Given a fixed victim policy network Qϕ trained for the original re-
ward rO , we attach the Adversarial Transformer Network (ATN) [1],
a feedforward deep neural network дθ : X → X which computes
the perturbation to be added to the input of the victim DQN Qϕ .
The aim of the adversary is to learn θ such that the perturbed states
lead the victim to follow an arbitrary adversarial reward rA.

We approach the training of θ by regarding the combination of
DQN and ATN Qϕ (x + дθ (x))) as another DQN to be trained for
the adversarial reward rA. In this process, we fix the parameters
learned for the victimQϕ and only learn θ . Specifically, we solve for
the Equation 3 where Qϕ is now the mapping x 7→ Qϕ (x + дθ (x)),
and the trained parameters are θ (and the victim DQN parameters ϕ
are fixed). Using the generalisability of дθ to unseen states x , the
adversary then only needs to feed the input state through дθ and
then through the victim DQN to achieve the desired outcome.

The detailed architecture is shown in Figure 2. Note that the
victimDQNarchitecture is the same as inMnih et al. [23]. To enforce
the norm constraint in Equation 6, we insert a norm-clipping layer
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Normal operation Adversarial manipulation

Time

Original rO

Adversarial rA

DQN

action a0

state s0

action a1 action aT

state s1 state sT

DQNDQN ...

DQN

action a0

state s0

ATN

⊕

DQN

action a1

state s1

ATN

⊕

DQN

action aT

state sT

ATN

⊕
...

Time

Rewards Rewards

Adversarial rA

Original rO

Figure 1: Overview of our threat model. We show the victim agent’s operation under normal operation (left) and under ad-
versarial manipulation (right). In the threat model, the victim Deep Q-Network (DQN) trained for the original reward rO is
manoeuvred to pursue an adversarial reward rA as adversarially perturbed sequence of inputs are fed (ATNs). Under this
adversarial manipulation, the fooled agent increases the adversarial reward (rA, red curves) over time.

input 84x84x4

deconv(32,9,1)

deconv(32,9,1)

deconv(32,9,1)

conv(4,5,1)

ClipNorm(ε)

ClipElementwise

conv(32,8,4)

conv(64,4,2)

conv(64,3,1)

dense(512)

dense(6)

Q-Values

DQN (fixed)ATN (trained)

⊕

Figure 2: Architecture of our threat model. ATN takes in-
put frames, computes perturbations in feed-forward fash-
ion, and adds the perturbations back on the input. The per-
turbed input is fed to the victim DQN. During training, DQN
parameters are fixed (green ovals), while ATN parameters
are updated (purple ovals). (De-)Convolution parameters in-
dicate (#filters, kernel size, stride) and the dense parameter
indicates (#features). For ATN deconvolution layers, we al-
ways use dilation rate 2.

(ClipNorm) which does the following operation:

clipp (x) =
{ p ·x
| |x | |2
, if | |x | |2 ≥ p

x , otherwise
(7)

We parametrize p using ϵ such that p = 84 · 84 · 4 · ϵ .
We also enforce the [0, 1] range for the input values to the victim

DQN via a ClipElementwise layer: x 7→ min(max(x , 0), 1). Spatial
dimensions for the intermediate features do not change throughout
the ATN network дθ .

4.2 Assumptions
We consider an adversary which can manoeuvre the long-term
behaviour and goal for a victim agent only through a sequence of
small input perturbations rather than through direct manipulation
of the victim’s policy network.

We explicitly spell out the assumptions we make for the de-
scribed algorithm and our experimental evaluations. While some
are restrictive, others may be easily relaxed.
1. White-box access at training time. For training the ATN, the
adversary requires gradient access to the victim policy network.
While this is restrictive, there exists much ongoing work on the
transferability of adversarial examples. Measuring the efficacy of
those techniques for our adversary will be an interesting future
work.
2. Manipulation on the input stream. We assume that the ad-
versary can manipulate the input stream (state observations) for the
victim DQN. This can be achieved e.g. by hacking into sensors [11]
or by making physical changes to the environment [17].
3. Computational resources to train the ATN. Training the
ATN can be computationally prohibitive for many. However, even
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one entity with the intention and ability to train such an ATN can
be a grave threat in security-critical applications.
4. Environment for training the victim. For training the ATN,
we have trained the combined ATN+DQN module on the same
environment that has trained the original DQN. This assumption
may be relaxed in the future by experimenting with different victim-
attacker environments (albeit with the same task).
5. Fixed victim DQN. If the victim DQN is updated, then the
adversary needs to re-train the ATN. However, in practice, such an
update does not occur continually.

5 EXPERIMENTS
We evaluate the threat model discussed in the previous section
against victim agents trained to play the game of Pong [5]. We will
first describe the game along with the original reward rO and define
an adversarial reward rA (§5.1). We will discuss implementation
details and our evaluation metric in §5.2, and present results and
analysis in §5.3.

5.1 The Game of Pong
In our experiments we focus on the game of Pong [5], a classic
environment for deep reinforcement learning. It is a great environ-
ment for our purposes, since victim agents can be trained to achieve
optimal play, a property not enjoyed in more complicated environ-
ments. We verify that our attack works even for high-performance
victim agents.

We use the Pong simulation from the OpenAI Gym [5]. In this
game, two players are positioned on opposite sides of the screen.
They can only move up and down. Similar to tennis, a single ball is
passed between the two players. The goal of the game is to play the
ball such that the other player is unable to catch it. In single-player
mode, the opponent uses simple heuristics to play. The original
reward rO is defined as

rO (st ) =


1, if the ball leaves the frame on the opposing side,
−1, if the ball leaves the frame on the agent’s side,
0, otherwise.

(8)
A game state is represented as a 210 × 160 colour image. Before

passing states to the DQN, we apply the same pre-processing as
[23]. (1) Merge four consecutive frames using a pixel-wise max
operation on each channel. (2) Resulting image is converted to
grey-scale and down-sampled to 84 × 84. (3) To enable the DQN
to utilise temporal dependencies, four most recent such processed
images are put into a queue and then used as inputs to the DQN.
(4) To get the next input, we append a new processed frame to the
queue and remove the oldest frame. During training, we append
about thirty processed frames per second to the queue. To make this
pre-processing consistent with the environment, the same action is
repeated four times.

The action space consists of six actions available on the Atari
controller (joystick): four directions, one button, and the “no action”
case.

5.1.1 Victim Agents. As victim agents, we use three off-the-shelf
trained agents from the OpenAI baselines [6] (OAI1, OAI2, OAI3), as
well as five agents trained by us independently (OR1, OR2, OR3, OR4,

OR5). They are all trained for the original reward rO of winning the
game.

5.1.2 Adversarial Reward. The adversary intends to impose an-
other reward rA on the trained agents. In our work, we consider
the centre reward, rC . For any given time step t , the centre reward
is defined as

rC (st ) =

{
1, if the ball hits the centre 20% of the enemy line,
0, otherwise.

(9)

See Figure 3 for an illustration of the rewards.

5.1.3 FGSM Baseline. As a baseline, we adapt the work of Be-
hzadan et al. [2] to our setting. An FGSM adversary is inserted in
between the victim agent and its input. Since we assume to have
white-box access at training time of the ATN, we grant the FGSM
adversary white-box access to the victim agent. Instead of an ATN,
the FGSM adversary consists of two components: a policy DQN and
a perturbation generation module. The policy DQN determines the
desired action of the FGSM adversary. We then generate a pertur-
bation using FGSM on the victim agent, where the desired action
of the policy DQN defines the one-hot target distribution. This
perturbation is then added to the input, clipped element-wise, and
given to the victim agent network.

5.2 Implementation Details
We describe the training procedure for the victim DQN agents as
well as the adversary’s ATN.

5.2.1 Training Victim Agents. Here, we describe the training
details for the victim agents mentioned above (OAI1-OAI3 and OR1-
OR5). There are two differences in the training of the OAI agents
and the OR agents. The OAI agents and the OR agents were trained
on 200 million frames and 80 million frames, respectively.1 We
use a different schedule for the fraction of random actions: during
training of the OR agents, we linearly anneal from 1.0 to 0.1 for 8
million frames, and then keep it constant at 0.1 afterwards. For the
OAI agents, the rate is linearly annealed from 1.0 to 0.1 for 4 million
frames, and then linearly annealed to 0.01 for another 36 million
frames, where it is then kept constant.

The DQN replay buffer size has been set to 100k observation
tuples. We use prioritized replay [31]. We use Adam with a learning
rate of 1 × 10−4 and γ = 0.99 [12], with the batch size 32. Every
agent uses a different random seed to initialize the network param-
eters and the environment.

5.2.2 Training Adversary. Given eight victim agents, we train
eight corresponding Adversarial Transformer Networks (ATNs) for
the centre reward rC . The training procedure for the composite
ATN+DQN network is identical to the training of victims, except
for different random seeds and a different schedule for the frac-
tion of random actions taken (linearly anneal from 1.0 to 0.1 for
40 million frames, then keep it constant). We control the amount
of perturbation via the norm clipping layer (Equation 7). Unless
otherwise denoted, we use ϵ = 10−4.

1In Pong, agents already achieve optimal reward after about 50 million frames.
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AgentOpponent

rO = 0

rO = 1

(a) Original reward

AgentOpponent

rC = 1

rC = 0

(b) Center reward

Figure 3: Rewards visualised. Green indicates the rewarded regions. Original reward rO is awarded when the ball does not hit
opponent’s pad; centre reward rC is awarded when the ball hits any mid-20% region, regardless of the opponent’s position.

To measure the oracle performance of ATNs, we have trained
five additional vanilla DQNs from scratch for the centre reward:
CR1-CR5.

5.2.3 Evaluation Metric. We evaluate the victim agents’ perfor-
mance on the original and adversarial rewards with or without the
adversarial manipulation on the input stream. The victim agents
play the game of Pong from five different seeds for 40k frames
each, without taking any random actions. We then plot the average
accumulative rewards over the five random seeds.

5.2.4 FGSMBaseline. We consider FGSMadversarieswith CR1-CR5
as policy networks.We use all of the agents trained for rO , OAI1-OAI3
and OR1-OR5, as victim agents. In a grid search, we empirically
determined the FGSM perturbation norm that yields the highest
success rate in imposing the policy DQN’s desired action on the
victim agents. This norm is ϵ = 1 × 10−5. The average success rate
varies from 49% to 61% for the OAI victim agents, and from 86% to
95% for the OR victim agents.

5.3 Results
We present experimental results here. See Figures 4, 6, and 7.

5.3.1 Main Results. We first examine the performance of the
eight victim agents (OAI1-OAI3 and OR1-OR5) for the original reward
rO of winning the games. In Figure 4(a), we observe that these
victim agents accrue rO steadily over time, all reaching over 100
rewarded points at the final frame (40k). We confirm that the victim
agents are fully performant at playing the game.

In terms of the centre reward rC , the eight victim agents achieve
around 100 rewarded points at the final frame (Figure 4(b)). Al-
though they are not explicitly trained for rC , they sometimes send
the ball to the middle while trying to win the games.

We then study the performance of the vanilla DQN networks
trained from scratch for the centre reward rC , to determine if the
task is learnable at all. In Figure 4(b), we confirm that the DQN
trained for rC attains a far better performance at accruing rC than
do the eight victim agents. We note that agents trained for rC are
not doing well for the original task of winning the games (rO ). We
confirm that it is possible to build a policy towards rC .

Finally, we examine the ability of our adversary to generate per-
turbations that misguide agents to aim for the alternative reward

rC . In Figure 4(b), we observe that the victim DQNs fooled into
pursuing rC do effectively accrue rC over time, matching the perfor-
mance of DQNs trained from scratch to pursue rC . Our adversary
can successfully impose an adversarial policy on a victim agent
through a sequence of perturbations.

5.3.2 L2 Norm Restriction. In the previous set of experiments,
we have used the L2 norm constraint ϵ = 10−4. Here, we study the
effect of the norm constraint on the effectiveness of attacks. It is
expected that relaxing the norm constraints gives more freedom
for the adversary to choose the adversarial patterns that effectively
lead the victim to the adversarial goal.

See Figure 6 for the results. We show the final frame centre
rewards versus ϵ for eight vanilla agents each fooled by our sequen-
tial adversarial attacks. We indeed observe that, from ϵ = 0 (no
attack) to ϵ = 10−5, the final frame rC increases, confirming that
the adversary is better-off with relaxed norm constraints. However,
for ϵ > 10−4, greater variances in the final rewards are observed;
we conjecture that for such great amount of perturbations training
is unstable and does not converge.

We visualise the amount of perturbations at each ϵ level in Fig-
ure 7. Note that ϵ = 10−4 make the perturbations visible, but this
would not interfere with a human player.

5.3.3 FGSM Baseline. We now compare our method to the
FGSM adversary. In Figure 5(b), we see that, averaged over the
five policy networks CR1-CR5, the FGSM adversary achieves a sig-
nificantly lower accumulated centre reward at the final frame for
the OAI agents than for the OR agents. The latter performance is
about on par with the ATN adversary and the agents trained for
the centre reward, CR1-CR5. When considering only the OAI agents,
Figure 5(a) shows that the ATN adversary outperforms the FGSM
adversary. We hypothesize that the longer training and the dif-
ferent schedule for the random exploration causes the OAI agents
to become more robust to the FGSM adversary. This is supported
by the significantly higher success rate by the FGSM adversary in
imposing its desired action on the OR agents compared to the OAI
agents. Possibly due to its more intimate joint training with the
victim agent, the ATN adversary can still successfully attack the
OAI agents.
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Figure 4: Accumulative rewards for agents (1) trained for original reward rO (2) trained for centre reward rC , and (3) trained
for rO but manipulated towards rC by our ATN adversary. Curves are averaged over multiple independently trained agents;
error bands indicate ±1 standard deviation.
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Figure 5: Accumulative centre rewards rC for two types of agents (OAI: OpenAI pretrained and OR: our trained models) each
fooled into rC by two methods (FGSM baseline and our ATN based adversarial policy enforcement).
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Figure 6: Final frame (40 000th frame) center reward for
agents trained for original reward but adversarially guided
by the center reward, when the adversary is given different
amounts of L2 norm budgets (x axis). Error band indicates
±1 standard deviation.

6 CONCLUSION
We have exposed a new security threat for deeply learned poli-
cies. Much prior work has argued that a small perturbation on the
states can make a deeply learned policy fail to achieve the origi-
nally set task. In our work, we have shown experimentally that
it is moreover possible to impose an arbitrary adversarial reward
and corresponding policy on a policy network (Deep Q-Network)
through a sequence of perturbations on the input stream (state
observations). The possibility of such an adversary questions the
safety of deploying learned agents in everyday applications, not to
mention security-critical ones.
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Figure 7: Examples of adversarial perturbations at L2 norm constraints ε ∈ {1 × 10−5, 3 × 10−5, 7 × 10−5, 1 × 10−4} that guides the
agents to pursue the centre reward.
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