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ABSTRACT

Removal of atmospheric haze and soil from a single image
captured via monocular camera is very challenging and com-
putationally ill-posed phenomenon in the advanced driver
assistance systems (ADAS). The recent development in the
field of deep learning has made it possible for the researchers
to train a model using various available on-the-shelf tools.
However, such models are not adapted to embedded plat-
forms due to their deep architecture design. In this paper, we
propose a new Convolutional Neural Network (CNN) based
architecture design, which inspires from EVD-Net j-level fu-
sion and AOD-Net for real-time single image dehazing and
soil removal for an embedded platform. The CNN is designed
based on a reformulated atmospheric scattering model for
haze and soil removal called Haze and Soil Removal Using
Convolutional Neural Network (HSRCNN). This is a first fully
end-to-end CNN model for real-time single image dehazing
and soil removal. The model is trained and tested using our
own generated dataset for both haze and soil. Furthermore,
a pre-trained faster R-CNN is used to verify the performance
difference between haze and soil images as compared to clean
images. Lastly, we witnessed a great improvement especially,
in image quality and object detection. HSRCNN is applicable
to a variety of distinct scenarios like ADAS, medical imag-
ing, night imaging and underwater imaging. The lightweight
design makes it easier to cascade with other neural networks.
The model is also tested and evaluated using different public
datasets such as RESIDE.
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1 INTRODUCTION

(a) Haze image (b) Clean Image

(c) Soil Image (d) Clean Image

Figure 1: Visual quality results of HSRCNN on haze
and soil covered images using (Top row) RESIDE
[15], and (Bottom row) our automotive dataset.

Advanced Driver Assistance Systems (ADAS) is a rising
upcoming technology to improve road safety, autonomous
driving, driver comfort and to reduce energy consumptions1.
ADAS use a monocular camera for autonomous parking, ob-
ject detection, lane change recognition and surround view
system to ensure reliability. However, the detection and recog-
nition qualities are strongly affected by frequent haze such as
aerosols in the atmosphere as discussed by Hwang and Lee*

1http://telematicswire.net/bmw-driving-into-the-automotive-future-
with-adas/
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in [10], and soil on camera lens e.g dust, sand, silt and clay,
Gu et al. in Gu et al. [6]. Therefore, haze and soil removal has
become a notable trouble in ADAS for autonomous vehicles.
The presence of haze due to poor weather conditions can
hinder the images that are being acquired by the camera
causing poor quality image acquisition and poor visibility
as shown in Figure 1. The light scattered by haze and soil
can deteriorate not only the aesthetic beauty of the scene
but also occludes important salient features in the image.
Hence, significantly reduces the performance of an algorithm.
Most recently, with an advancement in deep learning, people
have proposed different methods for haze and soil removal.
Computer vision has become an attractive field of research
in ADAS, achieving the state-of-the-art results. A common
issue that exists in these methods is the computational cost,
which is unsuitable for real-time implementation in ADAS.
In this article, we propose a method to perform not only
real-time single image haze removal using CNN but also
soil removal for embedded platforms. A CNN based model
has been designed for both haze and soil removal using two
different mathematical formulations.

2 LITERATURE REVIEW

Haze is traditionally an atmospheric phenomenon in which
images capture under bad conditions such as dust, smoke,
and other dry particulates obscure the clarity of the sky 2.
Where soil is a black or dark brown material typically consist-
ing of a mixture of organic remains, clay, and rock particles 3.
It generally appears on the cameras installed in ADAS and
surveillance outdoor vision systems (SOVs).

The first mathematical model for the formation of haze
was formulated by Koschmieder [12] in 1924 (see Equation
1) and was later reformulated by Li et al. [14] (see Equation
3), making it the most widely used method in the literature.

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝛼(1− 𝑡(𝑥)) (1)

The model incorporates two parts: the attenuation of trans-
mitted light 𝑡(𝑥) known as scene transmission map as in
Equation (1) and 𝐽(𝑥) is the actual scene irradiance. 𝐼(𝑥)
is the observed hazy image, 𝛼 is the ambient formed by the
scattering of the environmental illumination linked to the
quantity of light illuminating the scene. Whereas, 𝑥 denotes
an individual pixel location in the image.

The scene transmission 𝑡(𝑥), is a function of depth and is
given by:

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥) (2)

Here, 𝑑(𝑥) is the depth of the scene point corresponding
to the pixel location 𝑥. 𝛽 is the haze absorption, also known
as scattering coefficient of the atmosphere to represent the
ability of a unit volume of atmosphere to scatter light in all
directions [21] as in Equation (2).

2https://en.wikipedia.org/wiki/Haze
3https://en.wikipedia.org/wiki/Soil

𝐽(𝑥) = 𝐾(𝑥)𝐼(𝑥)−𝐾(𝑥) + 𝑏 (3)

The reformulated model 𝐾(𝑥) for haze formation is the
integration of both 𝛼 and 𝑡(𝑥) with constant bias variable 𝑏.

In order to solve the second issue of soil removal, we
followed the mathematical model initially presented by Gu
et al. [6], as shown in Equation 4 for dirty lens artifact.

𝐼(𝑥) = 𝐼0(𝑥)𝑎(𝑥) + 𝑐𝑏(𝑥) (4)

Above here, 𝐼0 is the clean image, 𝛼(𝑥) is the attenuation
map (camera dependent). 𝑐(𝑥) represents aggregate of outside
illumination and is scene dependent. Whereas, 𝑏(𝑥) is the
scattering map and is also camera dependent.

This model is also reformulated by Eigen et al. [3] as shown
in Equation 5 :

𝐼 ′ = 𝑝𝛼𝐷 + 𝐼(1− 𝛼) (5)

𝐼 represent the original clean image, 𝐼 ′ as generated nois-
ily image. 𝛼 is a transparency mask and D is the additive
component of the soil. p is a random perturbation vector
in RGB space, and the factors 𝑝𝛼𝐷 are multiplied together
element-wise as discussed in [3].

Deep Convolutional Neural Networks (DCNN) have shown
record-shattered performance in a variety of computer vision
problems. Recently CNN’s has been used for image dehazing
and soil removal to produce better quality and clean images.
In general, when we consider supervised methods, there is
always a lack of sufficient and correctly labeled data. Also, due
to the deep architectures of the models, these structures are
marked as less suitable for an embedded platform. Whereas,
In this article, we overcome most of the aforementioned
drawbacks by designing a method to generate a single clean
and better quality image with real-time implementation for
an embedded platform.

2.1 Traditional Methodologies

In general, there exist three kinds of methodologies in liter-
ature for haze removal : Multiple Images [21, 22, 25, 26]
Single Image [4, 7, 8, 18, 20, 23, 29, 30] and using Deep
learning [2, 14, 16, 24, 28]. Deep Learning for solving ill-
posed image dehazing is quite recent (i.e 2016) whereas, for
soil removal the first work was done back in 2013 by Eigen
et al. [3].

Earlier methods such [21, 25] used multiple images under
different weather conditions and degree of polarization to
perform haze removal. While other [9] approaches resorted to
estimate atmospheric scattering model parameters with the
empirical Dark Channel Prior. Tan [29] provided a method
to enhance the local contrast of the images based on the
study that haze free images have higher contrast to non-
hazy images. Hautiere et al. [7], Ma et al. [17] presented a
method to remove haze from images captured from moving
vehicle camera. Recently, this problem was addressed by Cai
et al., Li et al., Ling et al., Ren et al., Swami and Das using
deep learning.
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Formulated Koschmieder Model : J(x) = K(x)I(x)- K(x) + b

Soil removal model : I' = pD + I (1 - a ) 

Figure 2: The proposed architecture of HSRCNN. It is constructed by 5 convolution layers, 1 concatenation
layer with each layer output is passed through Relu activation function for generation of a clean haze and soil
free image.

(a) Conv1 (b) Conv2 (c) Conv3 (d) Conv4 (e) Conv5

Figure 3: Layer visualization of Proposed HSRCNN (left-right) : ”conv1”-”conv5” layers and their kernels.

There exist a common problem among these methods:
firstly they all are computational expensive except(AOD-
Net). Secondly among all the methods in literature, very
few could design models to be used for dynamic scenarios.
According to the study by Ancuti et al. [1] and Silberman et al.
[27] none of these methods could produce high-quality images
except [28]. Due to their limitations and limited practical
applicability, these methods are not being used in ADAS. We
try to solve most of the above issues by presenting a novel
end-to-end deep learning model to generate haze and soil free
images.

2.1.1 Contribution. The main contributions in this paper are
summarized as follows:

1. HSRCNN is a first real-time single image haze and soil
removal CNN architecture. It directly generates clean haze
and soil free image with better quality, estimating attenu-
ation and scattering parameters jointly. Whereas, most of
the methods use multiple images with significantly higher
computational cost.

2. In this work, we developed a unique setup with two
monocular cameras, where one camera lens is covered with
soil and other is soil-free. Both cameras are adjusted and
calibrated in a way that they capture the same scene. The
setup is designed to acquire real images for training our soil
model. It also solves the issue of labeling the dataset for
soil removal. As to date there exist no single labeled public
dataset online for both synthetic and real images.

3. A novel method is also established to generate synthetic
dataset using real soil on cameras lens. First, different soil
samples are created and images are acquired from the samples.
Later, the soil is extracted from the images and used as a
mask for creating synthetic datasets.

4. Most of the available dataset in the literature use homo-
geneous haze to generate hazy images. Whereas, we created
a method to generate synthetic dataset which contains ho-
mogeneous and non-homogeneous haze for training our haze
model. The images are firstly divided into patches and haze
is generated using different hyper-parameter for each patch
as in [14].

3 MODEL ARCHITECTURE

In this work, we formulate the constrained problem of real-
time single image dehazing and soil removal for ADAS. To
generate a high-quality haze and soil free image from a de-
graded hazy and soil carrying input image. We propose a
novel end-to-end convolutional neural network (CNN) called
HSRCNN. It consists of two main components: an optimized
CNN network design to estimate the transmission map and
a mathematical model each for haze and soil to generate a
single clean image. The CNN architecture is designed based
on the inspiration from the j-level fusion of EVD-Net[13] and
AOD-Net [14]. To generate clean image 𝐽(𝑥), it estimates
𝐾(𝑥) from an input image 𝐼(𝑥), followed by a clean image
generation module that utilizes 𝐾(𝑥) as its input-adaptive
parameters to estimate clean image 𝐽(𝑥) [14] as shown in
Equation 3. Whereas, for soil, we use a mathematical expres-
sion as given in Equation 5. The estimation of 𝐾 is significant
for our model HSRCNN as it estimates both haze and depth
levels as shown in Figure 2. Our model follows solely a stan-
dard CNN model as in [2]. Each convolutional layer applies a
kernel composed of 𝑤 * ℎ * 𝑑 coefficients, with 𝑤 defining the
width, ℎ as the height and 𝑑 as the depth of the hidden convo-
lutional layers. The depth of the layers depends on the number
of activation maps in the layers. Each layer is followed by an
activation function to introduce non-linearity as discussed in
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Table 1: Average PSNR and SSIM on Reside benchmark dataset

Metrics DCP MSCNN DehazeNet AOD-Net HSRCNN (haze removal)

PSNR 18.87 20.01 22.26 21.01 23.231
SSIM 0.793 0.790 0.832 0.837 0.842

Table 2: Average PSNR and SSIM on our automotive soil dataset

Metrics Dirt or Rain removal [3] HSRCNN (soil removal)

PSNR 17.978 21.231
SSIM 0.781 0.811

(a) Haze (b) Clean (c) Haze (d) Clean (e) Haze (f) Clean

Figure 4: Experimental results of HSRCNN haze and soil removal on public datasets.

[19] [2]. The first layer called 𝑐𝑜𝑛𝑣1 takes an input single RGB
image of 𝑠𝑖𝑧𝑒 = ℎ * 𝑤 and 𝑑, a stride of 𝑠𝑖𝑧𝑒 = 1 with kernel
𝑠𝑖𝑧𝑒 = 1 results in three different activation maps, followed
by layer ”𝑟𝑒𝑙𝑢1” to introduce non-linearity. The second layer
takes 𝑐𝑜𝑛𝑣1 as its input, with stride and pad 𝑠𝑖𝑧𝑒 = 1 and
kernel 𝑠𝑖𝑧𝑒 = 3 generating 3 activation maps, followed by
a ”𝑟𝑒𝑙𝑢2” layer. Similarly ”𝑐𝑜𝑛𝑣3” and ”𝑐𝑜𝑛𝑣4” layers were
created with kernel 𝑠𝑖𝑧𝑒 = 5, and 7. Inspired from [24], which
concatenates the coarse-scale network features we create layer
5 of HSRCNN, which concatenates ”𝑐𝑜𝑛𝑣1”,”𝑐𝑜𝑛𝑣2”,”𝑐𝑜𝑛𝑣3”
and ”𝑐𝑜𝑛𝑣4” called ”𝑐𝑜𝑛𝑐𝑎𝑡1” generating three channel R-G-
B output, followed by a last convolutional layer ”𝑐𝑜𝑛𝑣5” of
kernel 𝑠𝑖𝑧𝑒 = 9. The output of the layer ”𝑐𝑜𝑛𝑣5” i.e ′𝐾(𝑥)′

is the estimated transmission map with global atmospheric
light. Which is the then used as a prior in Equation 3 and
Equation 5 to generate a clean image, as could be seen in Fig-
ure 2. Whereas, Figure 3 depicts the layerwise visualization
of each kernel of the CNN model.

3.1 Dataset creation and Training

Training for both haze and soil model was performed sepa-
rately using deep learning framework Caffe Jia et al. [11].

Haze model: As there exist no benchmark datasets for
haze and its corresponding non-hazy images online except
[15] which only uses homogeneous haze, we decided to create
a dataset which contains both homogeneous and non homo-
geneous haze with different levels. The nature of haze was
inspected after studying natural images as haze was non-
homogeneous in nature and its concentration is not constant
over the image space (the fog might be denser over a body
of water due to its vaporization). A Synthetic dataset of

fifty thousand training and twenty thousand validation non-
overlapping hazy images were generated using our automotive
and region segmented SUN2012 dataset of cleaned images.
Synthetic haze was added to each segmented region[14]. The
training data was converted into an hdf5 format as explained
in 4. Weights were initialized using Gaussian random variables
with Relu neuron as stated in [19] and [2]. The base learn-
ing rate was set to 𝑏𝑎𝑠𝑒𝑙𝑟 : 0.000001 with 𝑙𝑟𝑝𝑜𝑙𝑖𝑐𝑦 : ”𝑠𝑡𝑒𝑝”.
The model was trained with a batch-size = 100, taking five
hundred iterations to complete 1 epoch. In total, the model
converged in less than ten epoch (i.e five thousand total num-
ber of iterations) using Stochastic Gradient Descent ”SGD”.

Soil model: Similar to haze, there exist no benchmark
or public datasets online for images with and without soil
on a camera lens. To create a dataset with ground truth, a
novel simple technique is designed to extract soil from images
taken from monocular cameras. Different soil samples were
created and the soil was extracted to create a labeled dataset
with and without soil from real images. A dataset of thirty
thousand labeled images for training and ten thousand non-
overlapping soil images for testing was created as explained
in section 3.1 of [3]. The training data was first converted
into ℎ𝑑𝑓5 format. Weights were initialized using Gaussian
random variables with Relu neuron as for haze. The base
learning rate, learning policy, step size and batch size was set
accordingly. The model was trained using Tesla P100-PCIE
and tested real-time on Jetson tk1.

4http://machinelearninguru.com/deep learning/data preparation/hdf5/hdf5.html
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(a) Haze Image (b) Clean Image (c) Haze + FastRCNN (d) Clean + FastRCNN

Figure 5: Proposed HSRCNN haze removal performance evaluation using FastRCNN [5] , (left-right) : Input
hazy image, generated clean image by HSRCNN, FastRCNN [5] applied on hazy input with recognition rate
of 0.607, 0.964 and 0.782, FastRCNN [5] applied to generated clean image with better recognition rate such
as 0.655, 0.985, 0.775. Zoom in the images to see the recognition rate clearly.

(a) Soil Image (b) Clean Image (c) Soil + FastRCNN (d) Clean + FastRCNN

Figure 6: Proposed HSRCNN soil removal performance evaluation using FastRCNN [5], (left-right) : Input
real image captured with soil lens, generated clean image by HSRCNN, FastRCNN [5] applied on soil input
with recognition rate 0.299, FastRCNN [5] applied to generated clean image with a recognition rate of 0.670.
Zoom in the images to see the recognition rate clearly.

4 EXPERIMENTAL RESULTS

In this section, we compare our proposed model with several
state-of-the-art methods for image dehazing and soil removal
using deep learning. As stated above, we have created two
different datasets each for soil and haze. To evaluate our
algorithm for haze removal we use a synthesized testset RE-
SIDE [15]. To conduct a fair test we computed PSNR and
SSIM using RESIDE benchmark[15]. SSIM computes errors
beyond pixel level and reflects human perception. The results
we achieved as shown in Table 1 depicts that our model pro-
duces promising results both in terms of peak signal to noise
ratio (PSNR) and structural similarity index (SSIM). The
model HSRCNN was also evaluated using our automotive syn-
thetic and real soil dataset as shown in Table 2. To perform
some further experiments, we used public single images for
soil and haze as shown in figure 1 and Figure 4. FastRCNN
was used to verify the performance of HSRCNN with haze
images from RESIDE as can be seen in Figure 5. Whereas,
for soil removal real images from our automotive dataset was
used to evaluate the performance. The experimental results
show clearly that our method performs better in different
scenarios removing haze and soil from the single image.

5 CONCLUSIONS AND FUTURE
WORK

This article proposes a CNN model for real-time single image
dehazing and soil removal for ADAS. The model was com-
pared with state-of-the-art methods achieving results with
better performance and improved image quality. A novel
technique for creating synthesized and real dataset for both
haze and soil was established. Moreover, our model is tested
on different real and synthetic datasets to prove the robust-
ness and efficiency under different environmental conditions.
Lastly, model evaluation was performed using FastRCNN [5]
to produce a clean image along with its recognition rate as
compare to an un-clean image. In future, we aim to design a
model called joint HSRCNN to jointly remove haze and soil
from a single image with one mathematical formation.
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