Risk Averse Robust Adversarial Reinforcement
Learning
Extended Abstract

Xinlei Pan

UC Berkeley

Berkeley, CA
xinleipan@berkeley.edu

ABSTRACT

Robot controllers need to deal with a variety of uncertainty
and still perform well. Reinforcement learning and deep net-
works often suffer from brittleness and e.g. difficulty on trans-
fer from simulation to real environments. Recently, robust
adversarial reinforcement learning (RARL) was developed
which allows application of random and systematic perturba-
tions by an adversary. A limitation of previous work is that
only the expected control objective is optimized. i.e. there
is no explicit modeling or optimization of risk. Thus it is
not possible to control the probability of catastrophic events.
In this paper we introduce risk-averse robust adversarial
RL, using a risk-averse main agent and a risk-seeking adver-
sary. We show through experiments in vehicle control that a
risk-averse agent is better equipped to handle a risk-seeking
adversary, and allows fewer catastrophic outcomes.

KEYWORDS

Risk averse reinforcement learning, Adversarial learning,
Robust reinforcement learning

ACM Reference Format:

Xinlei Pan and John Canny. 2018. Risk Averse Robust Adversarial
Reinforcement Learning: Extended Abstract. In Proceedings of ACM
Computer Science in Cars Symposium (CSCS’18). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Reinforcement learning has demonstrated remarkable per-
formance on a variety of sequential decision making tasks
such as Go [6] and Atari games [2]. In order to use rein-
forcement learning trained agents in real world applications
such as house-hold robots or autonomous driving vehicle,
the agents need a very high level of robustness and safety.
Previous work on robust RL has used random perturbation
of a limited number of parameters to change the dynamics
[5]. In [1], gradient-based adversarial perturbations were
introduced during training. In [4] an adversary agent was

CSCS’18, September 2018, Munich, Germany

John Canny

UC Berkeley

Berkeley, CA
jfc@cs.berkeley.edu

itself trained using reinforcement learning. This approach is
more general than [1], and includes both random and sys-
tematic adversaries that directly provide adversarial attack
on the input states and dynamics. However, these methods
only achieve limited diversity of dynamics, which may not
be diverse enough to resemble the real world variety. These
methods also mainly consider the robustness of models in-
stead of considering the robustness and risk averse ability
of the trained model. In this paper, we consider the task
of training risk averse robust reinforcement policies. We
model the risk as variance of value functions, inspired by
[7]. In order to emphasize that the agent should be averse
to extreme catastrophe, we design the reward function to
be asymmetric. A robust policy should not only maximize
long term expected cumulative reward, but should also select
actions with small variance of that expectation. Here, we
use emsembles of Q value network to estimate variance of
Q values. The work in [3] proposes a similar technique to
help exploration. We consider a scenario where there are two
agents working together and combating each other. We then
propose to train risk averse robust adversarial reinforcement
learning policies (RARARL).

2 RISK AVERSE ROBUST ADVERSARIAL
REINFORCEMENT LEARNING

Two Player Reinforcement Learning. We consider the
environment as a Markov Decision Process (MDP) M =
{S, A, R, P,y}, where S is the state space, A is the action
space, R(s, a) is the reward function, P (s’|s, a) is the state
transition model, and y is the reward discount rate. There
are two agents in this game, one agent is called the protago-
nist agent (denoted by P) which strives to learn a policy 7zp
to maximize cumulative expected reward E,, [y'r;]. The
other agent is called the adversarial agent (denoted by A),
which strives to learn a policy 74 to pit the protagonist agent
and minimize the cumulative expected reward. In our im-
plementation, the adversarial agent gets the negative of the
environmental reward —r. The protagonist agent should be
risk averse, where we model the risk as variance of the value
function (introduced later on), so the value of action a at

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CSCS’18, September 2018, Munich, Germany

state s is modified as, Op (s, a) = Qp(s, a) — AVarm (07 (s, a)],
where Qp(s, a) is the modified Q function, and Qp(s, a) is
the original Q function, and Var,,[QF' (s, a)] is the variance
of Q function across m different models, and A is a multipli-
cation constant, and we choose its value to be 0.1. The term
—AVar,[QF (s, a)] is called the risk-averse term thereafter.
In order for the adversarial agent to be risk seeking so as
the provide more challenges for the protagonist agent, the
modified value function for action selection is Q(s,a) =
Qa(s,a) + AVarp,[Q7 (s, a)] where A is a multiplication con-
stant, and the value is 1. The term AVary,[QF' (s, a)] is called
the risk-seeking term thereafter. The action space of this
agent is the same as protagonist agent. The two agents take
actions in turn during training. Asymmetric Reward De-
sign. In order to train risk averse agents, we propose to
design asymmetric reward function. Namely, good behavior
will receive only small positive reward, while risk behavior
will receive very negative reward, so that the trained agent
can be risk averse and robust. Risk Modeling using Value
Variance. The risk of a certain action can be modeled by
estimating the variance of value function across different
models trained on different sets of data. Inspired by [3], we
estimate variance of Q value functions by training multiple
Q value network together, and take their Q value variance
as risk measurement. The training process for a single agent
is the same as in [3].

3 EXPERIMENTS

Simulation Environments. For discrete control, we used
the car racing TORCS environment [8]. We use the Michigan
Speedway environment in TORCS. The vehicle takes actions
in a discrete space consisting of 9 actions, which are combi-
nations of move ahead, accelerate, and turn left/right. The
reward function is defined to proportional to the speed along
the road direction and also penalize collision as catastrophe.
The catastrophe reward is much more negative than normal
reward.

Baselines and Our Method. Vanilla DQN. The pur-
pose of comparing with vanilla DQN is to show that models
trained in one environment may overfit to that specific dy-
namics and fail to transfer to other dynamics. We denote
this experiment as dqn. Ensemble DQN. Ensemble DQN
tends to be more robust than vanilla DQN since it gets the
vote from all ensemble policies. However, without being
trained on a different dynamics, even Ensemble DQN may
not work well when there is adversarial attacks or simple ran-
dom dynamics change. We denote this experiment as bsdqn.
Ensemble DQN with Random Perturbations Without
Risk Averse Term. We train the protagonist agent and pro-
vide random perturbation. However, for comparison reasons,
we didn’t include here variance guided exploration term.

CSCS 2018 Submission

Namely, only the Q value function will be used for choosing
actions. We denote this experiment as bsdqnrand. Ensem-
ble DQN with Random Perturbations With the Risk
Averse Term. We only train the protagonist agent and pro-
vide random perturbations. The Protagonist agent will select
action based on its Q value function and the risk averse
term. We denote this experiment as bsdqnrandriskaverse.
Ensemble DQN with Adversarial Perturbation. This is
to compare our model with [4]. To make a fair compari-
son, we also use Ensemble DQN to train the policy while
the variance term is not used as either risk-averse or risk-
seeking term in either agent. We denote this experiment as
bsdgnadv. Our method. In our method, we train both pro-
tagonist agent and adversarial agent with Ensemble DQN.
We will include here the variance guided exploration term.
Therefore, the Q function and its variance across different
models will be used for action selection. We denote this exper-
iment as bsdgnadvriskaverse. Evaluation. First, testing
without perturbations. We tested all trained models without
perturbations. Second, testing with random perturbations.
Specifically, we tested these models by randomly taking 1
action for every 10 actions taken by the main agent. Third,
testing with Adversarial Perturbations. Random perturba-
tions may not result in catastrophe for the vehicle. Therefore,
we also tested all models with our trained adversarial agent.
Specifically, we tested these models by taking 1 action de-
cided by the adversarial agent for every 10 actions taken by
the main agent. The results are shown in figure 1.

Figure 1: Testing all models without attack, with random at-
tack, and with adversarial attack (from top to bottom). The
reward is divided into distance related reward (left), progress
related reward (middle). The result for catastrophe reward
per episode is present in the last image.

For all results curve, there is a vertical blue line corre-
sponding to 0.55 million steps showing the beginning of
the added perturbations during training. Either the random
perturbation or adversarial perturbation is added.

Risk Averse Robust Adversarial Reinforcement Learning

4 CONCLUSION

We show that by introducing a notion of risk averse behavior,
training agents with adversarial agent achieves significantly
less catastrophe than agents trained without adversarial at-
tack. Trained adversarial agent is also able to provide pertur-
bations stronger than random perturbations.

REFERENCES

[1] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio
Savarese. 2017. Adversarially Robust Policy Learning: Active Construc-
tion of Physically-Plausible Perturbations. In IEEE/RSY International
Conference on Intelligent Robots and Systems (IROS).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through
deep reinforcement learning. Nature 518, 7540 (2015), 529-533.

Tan Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy.
2016. Deep exploration via bootstrapped DQN. In Advances in Neural
Information Processing Systems. 4026-4034.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta.
2017. Robust Adversarial Reinforcement Learning. International Con-
ference on Machine Learning (ICML) (2017).

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey
Levine. 2017. Epopt: Learning robust neural network policies using
model ensembles. In International Conference on Learning Representa-
tions (ICLR).

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529, 7587 (2016),
484-489.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. 2016. Learning the
variance of the reward-to-go. Journal of Machine Learning Research 17,
13 (2016), 1-36.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dim-
itrakakis, Rémi Coulom, and Andrew Sumner. 2000. Torcs, the open
racing car simulator. Software available at http://torcs. sourceforge. net
(2000).

[2

—

E

—

[4

flaa)

5

—_

G

—

[7

—

8

—

CSCS’18, September 2018, Munich, Germany

	Abstract
	1 Introduction
	2 Risk Averse Robust Adversarial Reinforcement Learning
	3 Experiments
	4 Conclusion
	References

